已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于G,AB⊥BE,垂足為B,DE⊥BE,垂足為E,且AC=DF,BF=CE.求證:∠BFG=∠ECG.
考點:全等三角形的判定與性質
專題:證明題
分析:由BF=CE,利用等式的性質得到BC=EF,利用HL得到直角三角形ABC與直角三角形DEF全等,利用全等三角形對應角相等得到一對角相等,再利用等角的補角相等即可得證.
解答:證明:∵BF=CE,
∴BF+FC=CE+FC,即BC=EF,
在Rt△ABC和Rt△DEF中,
BC=EF
AC=DF

∴Rt△ABC≌Rt△DEF(HL),
∴∠ACB=∠DFE,
∴∠BFG=∠ECG.
點評:此題考查了全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知y=1-
1
z
,z=1-
1
x
,則用含x的代數(shù)式表示y為( 。
A、y=
1
1-x
B、x=
y-1
y
C、y=
x
x-1
D、x=
1-y
y

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知線段AB,按照如下的方法作圖:以AB為邊作正方形ABCD,取AD的中點E,連接EB,延長DA到F,使EF=EB,以線段AF為邊,作正方形AFGH,那么點H是線段AB的黃金分割點嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,已知AB∥CD,分別探討下面三個圖形中∠BAP與∠APC、∠DCP的關系,請任選一個加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線a,b,被直線m,n所截,且∠1=∠2,求證:∠3=∠4(填空).
證明:∵∠1=∠2
 
,
∴m∥n
 

∴∠3=∠4
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解方程:3x-15=x-19.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

甲、乙兩數(shù)的和是25,甲數(shù)比乙數(shù)的2倍小1,求這兩個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明在拼圖時,發(fā)現(xiàn)8個一樣大小的長方形恰好可以拼成一個大的長方形,如圖(1),小紅看見了,說:“我來試一試”結果小紅七拼八湊,拼成了如圖(2)的正方形,中間還留下一個洞,恰好邊長是2mm的小正方形,你能計算出每個長方形的長和寬嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=100°,求∠ACB的度數(shù).

查看答案和解析>>

同步練習冊答案