【題目】某校為了選拔學生參加“漢字聽寫大賽”,對九年級一班、二班各10名學生進行漢字聽寫測試,計分采用10分制(得分均取整數(shù)),成績達到6分或6分以上為及格,達到9分或10分為優(yōu)秀,成績?nèi)绫?所示,并制作了成績分析表(表2)
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 及格率 | 優(yōu)秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | c | 10 | 4.94 | 80% | 40% |
(1)求表2中,a,b,c;
(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班成績比一班成績好;但也有人堅定認為一班成績比二班成績好.請你給出支持一班成績好的兩條理由.
【答案】(1)8,7.5,7.5;(2)如①一班的平均分比二班高,所以一班成績比二班好;②一班學生得分的方差比二班小,說明一班成績比二班穩(wěn)定.
【解析】
(1)分別用平均數(shù)的計算公式和眾數(shù)、中位數(shù)的定義解答即可;
(2)由平均數(shù)和方差求解即可.
解:(1))∵數(shù)據(jù)8出現(xiàn)了4次,最多,
∴眾數(shù)a=8;
b=×(10×3+9+8+7+6×2+5+4)=7.5,
將二班成績從小到大排列為:4,5,6,6,7,8,9,10,10,10,
∴c==7.5,
(2)如①一班的平均分比二班高,所以一班成績比二班好;
②一班學生得分的方差比二班小,說明一班成績比二班穩(wěn)定.
科目:初中數(shù)學 來源: 題型:
【題目】武漢市光谷實驗中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),下列說法錯誤的是( 。
A. 九(1)班的學生人數(shù)為40 B. m的值為10
C. n的值為20 D. 表示“足球”的扇形的圓心角是70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于E,點F在AD上,且AF=AB,連接EF.
(1)判斷四邊形ABEF的形狀并證明;
(2)若AE、BF相交于點O,且四邊形ABEF的周長為20,BF=6,求AE的長度及四邊形ABEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( )
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,相距2cm的兩個點A、B在直線l上.它們分別以2cm/s和1cm/s的速度在l上同時向右平移,當點A,B分別平移到點A1 , B1的位置時,半徑為1cm的⊙A1 , 與半徑為BB1的⊙B相切.則點A平移到點A1 , 所用的時間為s.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。
A. 6 B. 4 C. 3 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如下三個函數(shù)圖象中,有兩個函數(shù)圖象能近似地刻畫如下兩個情境:
情境:小芳離開家不久,發(fā)現(xiàn)把作業(yè)本忘在家里,于是返回家里找到了作業(yè)本再去學校;
情境:小芳從家出發(fā),走了一段路程后,為了趕時間,以更快的速度前進.
(1)情境, 所對應(yīng)的函數(shù)圖象分別為 , (填寫序號).
(2)請你為剩下的函數(shù)圖象寫出一個適合的情境.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
∵EF∥AD,( )
∴∠2= .(兩直線平行,同位角相等)
又∵∠1=∠2,( )
∴∠1=∠3.( )
∴AB∥DG.( )
∴∠BAC+ =180°( )
又∵∠BAC=70°,( )
∴∠AGD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AD是角平分線,∠B=54°,∠C=76°.
(1)求∠ADB和∠ADC的度數(shù);
(2)若DE⊥AC,求∠EDC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com