已知雙曲線與直線相交于A、B兩點.第一象限上的點M()在雙曲線上(在A點左側(cè)).過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.

(1)若點D坐標是(-8,0),求A、B兩點坐標及的值;

(2)若B是CD的中點,四邊形OBCE的面積為4,求此時M點的坐標;

(3)在(2)的條件下,設(shè)直線AM分別與x軸、y軸相交于點P、Q兩點,求MA:PQ的值.

【解析】(1)根據(jù)B點的橫坐標為-8,代入y=1/4x中,得y=-2,得出B點的坐標,即可得出A點的坐標,再根據(jù)k=xy求出即可;

(2)根據(jù)S矩形DCNO=2mn=2k,S△DBO=  mn=  k,S△OEN=  mn=  2k,即可得出k的值,

(3)首先求出直線MA解析式,再利用相似或勾股定理解得

 

【答案】

(1)B(-8,-2).而A、B兩點關(guān)于原點對稱,∴A(8,2).

.……………………………………………2分

(2)∵N(0,-n),BCD的中點,AB、M、E四點均在雙曲線上,

,B(-2m,-),C(-2m,-n),E(-m,-n).

        S矩形DCNO,SDBO=SOEN =,    

    ∴S四邊形OBCE= S矩形DCNOSDBOSOEN=k.∴. …………4分

由直線及雙曲線,得A(4,1),B(-4,-1),

M(2,2).……………………………………………………6分

(3)求出直線MA解析式為:,所以P(-6,0),Q(0,3)

         利用相似或勾股定理得=  ………………………… 10分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012屆江蘇泰興市黃橋初級中學(xué)八年級下期中數(shù)學(xué)試卷(帶解析) 題型:解答題

已知雙曲線  與直線  相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線 上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.
【小題1】若點D坐標是(-8,0),求A、B兩點坐標及k的值.
【小題2】若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.
【小題3】在(2)的條件下,若P為x軸上一點,是否存在△OMP為等腰三角形?若存在,寫出P點坐標;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(帶解析) 題型:解答題

已知雙曲線與直線相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.
(1)若點D坐標是(-8,0),求A、B兩點坐標及k的值.
(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-反比例函數(shù)與一次函數(shù)的圖像(帶解析) 題型:解答題

已知雙曲線與直線相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線上的動點.過點B作BD∥y軸交x軸于點D.過N(0,﹣n)作NC∥x軸交雙曲線于點E,交BD于點C.

(1)若點D坐標是(﹣8,0),求A、B兩點坐標及k的值.
(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省鎮(zhèn)江市丹徒區(qū)中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知雙曲線與直線y=x-相交于點P(a,b),則   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(解析版) 題型:解答題

已知雙曲線與直線相交于A、B兩點.第一象限上的點M(m,n)(在A點左側(cè))是雙曲線上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.

(1)若點D坐標是(-8,0),求A、B兩點坐標及k的值.

(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.

(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.

 

 

查看答案和解析>>

同步練習(xí)冊答案