【題目】如圖,矩形ABCD中,兩條對角線相交于點(diǎn)O,AE平分∠BAD交于BC邊上的中點(diǎn)E,連接OE.下列結(jié)論:①∠ACB=30°;②OE⊥BC;③OE=BC;④SACE=SABCD.其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

由矩形的性質(zhì)得出

由等腰三角形的性質(zhì)得出BE=CE,OEBC, 證出ABE是等腰直角三角形,得出得出①不正確,②、③正確;由ACE的面積=矩形ABCD的面積,得出④不正確;即可得出結(jié)論.

∵四邊形ABCD是矩形,

OB=OC,

EBC的中點(diǎn),

AE平分∠BAD,

ABE是等腰直角三角形,

∴①不正確,②、③正確;

ACE的面積矩形ABCD的面積

∴④不正確;正確的有2個,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動.

(1)11日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2,結(jié)果甲比乙早15分鐘到達(dá)頂峰.求甲的平均攀登速度是每分鐘多少米?

(2)16日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時,結(jié)果兩人同時到達(dá)頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的垂直平分線于點(diǎn),交于點(diǎn),且,添加一個條件,能證明四邊形為正方形的是________

; ; ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善南寧市的交通現(xiàn)狀,市政府決定修建地鐵,甲、乙兩工程隊(duì)承包地鐵1號線的某段修建工作,從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的3倍;若由甲隊(duì)先做20天,剩下的工程再由甲、乙兩隊(duì)合作10天完成.

求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

已知甲隊(duì)每天的施工費(fèi)用為萬元,乙隊(duì)每天的施工費(fèi)用為萬元,工程預(yù)算的施工費(fèi)用為500萬元,為縮短工期,擬安排甲、乙兩隊(duì)同時開工合作完成這項(xiàng)工程,那么工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需增加多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)CBA延長線上一點(diǎn),CDOD點(diǎn),弦DECB,QAB上一動點(diǎn),CA1CDO半徑的倍.

(1)O的半徑R;

(2)當(dāng)QAB運(yùn)動的過程中,圖中陰影部分的面積是否發(fā)生變化?若發(fā)生變化,請你說明理由;若不發(fā)生變化,請你求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作出函數(shù)的圖象,并利用圖象回答問題:

(1)寫出圖象與軸的交點(diǎn)A的坐標(biāo)________,與軸的交點(diǎn)B的坐標(biāo)________.

(2)當(dāng)時,的取值范圍是______________.

(3)有一點(diǎn)C的坐標(biāo)是(34),順次連接點(diǎn)A、B、C得到ABC,三角形ABC的面積為________.

(4)點(diǎn)C關(guān)于軸對稱的點(diǎn)D的坐標(biāo)

(5)連接B,D兩點(diǎn),求直線BD的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的情景對話,然后解答問題:

老師:我們定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

小華:等邊三角形一定是奇異三角形!

小明:那直角三角形中是否存在奇異三角形呢?

問題(1):根據(jù)奇異三角形的定義,請你判斷小華提出的猜想:等邊三角形一定是奇異三角形是否正確?__________.(”)

問題(2):已知RtΔABC中,兩邊長分別是,10,,若這個三角形是奇異三角形,則第三邊是__________.

問題(3):如圖,以AB為斜邊分別在AB的兩側(cè)作直角三角形,且AD=BD,若四邊形ADBC內(nèi)存在點(diǎn)E,使得AE=AD,CB=CE.試說明:ACE是奇異三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、CD在同一直線上,△ABC和△CDE都是等邊三角形,且在直線BD的同側(cè),連接BEAC于點(diǎn)F,連接ADCE于點(diǎn)G,連接FG

1)求證:ADBE;

2)求證:△ACG≌△BCF;

3)試猜想△CFG的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸交于點(diǎn)、與軸交于點(diǎn),直線軸交于點(diǎn),將直線沿直線翻折,點(diǎn)恰好落在軸上的點(diǎn),則直線對應(yīng)的函數(shù)關(guān)系式為__________

查看答案和解析>>

同步練習(xí)冊答案