(2010•東營)如圖,在銳角三角形ABC中,BC=12,△ABC的面積為48,D,E分別是邊AB,AC上的兩個動點(D不與A,B重合),且保持DE∥BC,以DE為邊,在點A的異側作正方形DEFG.
(1)當正方形DEFG的邊GF在BC上時,求正方形DEFG的邊長;
(2)設DE=x,△ABC與正方形DEFG重疊部分的面積為y,試求y關于x的函數(shù)關系式,寫出x的取值范圍,并求出y的最大值.

【答案】分析:(1)根據題意,作出圖示;分析可得:AM=8,且△ADE∽△ABC,進而可得,解可得答案.
(2)分兩種情況:①當正方形DEFG在△ABC的內部時,②當正方形DEFG的一部分在△ABC的外部時,依據平行線以及正方形的性質,可得二次函數(shù),再根據二次函數(shù)的性質,解可得重合部分的面積,比較可得面積的最大值.
解答:解:
(1)當正方形DEFG的邊GF在BC上時,如圖(1),過點A作BC邊上的高AM,交DE于N,垂足為M.
∵S△ABC=48,BC=12,∴AM=8,
∵DE∥BC,△ADE∽△ABC,

而AN=AM-MN=AM-DE,∴,
解之得DE=4.8.∴當正方形DEFG的邊GF在BC上時,正方形DEFG的邊長為4.8,

(2)分兩種情況:
①當正方形DEFG在△ABC的內部時,
如圖(2),△ABC與正方形DEFG重疊部分的面積為正方形DEFG的面積,
∵DE=x,∴y=x2
此時x的范圍是0<x≤4.8,
②當正方形DEFG的一部分在△ABC的外部時,
如圖(3),設DG與BC交于點Q,EF與BC交于點P,
△ABC的高AM交DE于N,
∵DE=x,DE∥BC,∴△ADE∽△ABC,
,而AN=AM-MN=AM-EP,
,解得EP=8-x.
所以y=x(8-x),即y=-x2+8x,
由題意,x>4.8,且x<12,所以4.8<x<12;
因此△ABC與正方形DEFG重疊部分的面積需分兩種情況討論,
當0<x≤4.8時,△ABC與正方形DEFG重疊部分的面積的最大值為4.82=23.04,
當4.8<x<12時,因為,
所以當時,
△ABC與正方形DEFG重疊部分的面積的最大值為二次函數(shù)的最大值:y最大=-×62+8×6=24;
因為24>23.04,
所以△ABC與正方形DEFG重疊部分的面積的最大值為24.
點評:本題主要考查了二次函數(shù),平行線以及正方形的性質等知識點,要根據題意,得到二次函數(shù)關系,再根據二次函數(shù)的性質,即可得答案.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2010•東營)如圖,AB是⊙O的直徑,點D在AB的延長線上,點C在⊙O上,CA=CD,∠CDA=30°.
(1)判斷直線CD與⊙O的位置關系為
相切
相切
;
(2)若⊙O的半徑為5,則點A到CD所在直線的距離為
7.5
7.5

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•東營)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最小.請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省東營市中考數(shù)學試卷(解析版) 題型:解答題

(2010•東營)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最。埱蟪鳇cP的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省東營市中考數(shù)學試卷(解析版) 題型:解答題

(2010•東營)如圖所示的矩形包書紙中,虛線是折痕,陰影是裁剪掉的部分,四個角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.
(1)設課本的長為acm,寬為bcm,厚為ccm,如果按如圖所示的包書方式,將封面和封底各折進去3cm,用含a,b,c的代數(shù)式,分別表示滿足要求的矩形包書紙的長與寬;
(2)現(xiàn)有一本長為19cm,寬為16cm,厚為6cm的字典,你能用一張長為43cm,寬為26cm的矩形紙,按圖所示的方法包好這本字典,并使折疊進去的寬度不小于3cm嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省東營市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•東營)如圖,點C是線段AB上的一個動點,△ACD和△BCE是在AB同側的兩個等邊三角形,DM,EN分別是△ACD和△BCE的高,點C在線段AB上沿著從點A向點B的方向移動(不與點A,B重合),連接DE,得到四邊形DMNE.這個四邊形的面積變化情況為( )

A.逐漸增大
B.逐漸減小
C.始終不變
D.先增大后變小

查看答案和解析>>

同步練習冊答案