4.計(jì)算:
(1)(-3ab2c3)×(-2ab)2
(2)$({x}^{6}+2{x}^{5}-\frac{1}{2}{x}^{4})÷{(\frac{1}{2}{x}^{2})}^{2}$
(3)(2x-3y)(3x+2y)-(2x-2y)2

分析 (1)先算乘方,再算乘法即可;
(2)先算乘方,再算除法即可;
(3)先算多項(xiàng)式乘以多項(xiàng)式和完全平方公式,再合并同類項(xiàng)即可求解.

解答 解:(1)(-3ab2c3)×(-2ab)2
=(-3ab2c3)×4a2b2
=-12a3b4c3
(2)$({x}^{6}+2{x}^{5}-\frac{1}{2}{x}^{4})÷{(\frac{1}{2}{x}^{2})}^{2}$
=(x6+2x5-$\frac{1}{2}$x4)÷$\frac{1}{4}$x4
=4x2+8x-2;
(3)(2x-3y)(3x+2y)-(2x-2y)2
=6x2+4xy-9xy-6y2-4x2+8xy-4y2
=2x2+3xy-10y2

點(diǎn)評(píng) 本題考查了整式的混合運(yùn)算的應(yīng)用,關(guān)鍵是熟練掌握計(jì)算法則正確進(jìn)行計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.某學(xué)校要買精美筆記本(大于10本)用作獎(jiǎng)品,可以到甲、乙兩家商店購買,已知兩商店的標(biāo)價(jià)都是每本10元,甲商店的優(yōu)惠條件是:購買10本以上,前面10本按標(biāo)價(jià)出售,從第11本開始按標(biāo)價(jià)的七折出售;乙商店的優(yōu)惠條件是:從第一本起都按標(biāo)價(jià)的八折出售.
(1)若要購買20本,到乙商店買更省錢.
(2)學(xué),F(xiàn)準(zhǔn)備用296元錢買此種獎(jiǎng)品,最多可買38本.
(3)買多少本時(shí),到兩家商店購買付款相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.已知正方形的邊長為4cm,那么它的外接圓的面積為8πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如圖,點(diǎn)P是線段MN上一點(diǎn),點(diǎn)Q是PN的中點(diǎn),PQ=4cm,則MN-MP的長為8cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A(-1,0)、B(3,0)兩點(diǎn),交y軸于點(diǎn)C,連接BC,動(dòng)點(diǎn)P以每秒1個(gè)單位長度的速度從A向B運(yùn)動(dòng),動(dòng)點(diǎn)Q以每秒$\sqrt{2}$個(gè)單位長度的速度從B向C運(yùn)動(dòng),P、Q同時(shí)出發(fā),連接PQ,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求二次函數(shù)的解析式;
(2)如圖1,當(dāng)△BPQ為直角三角形時(shí),求t的值;
(3)如圖2,過點(diǎn)Q作QN⊥x軸于N,交拋物線于點(diǎn)M,連結(jié)MC,MB,當(dāng)t為何值時(shí),△MCB的面積最大,并求出此時(shí)點(diǎn)M的坐標(biāo)和△MCB面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.若將拋物線F:拋物線y=x2+bx$\frac{9}{2}$改成y=ax2+bx+c,拋物線的頂點(diǎn)為P,與y軸交于點(diǎn)A,與直線OP交于點(diǎn)B.過點(diǎn)P作PD⊥x軸于點(diǎn)D,平移拋物線F使其經(jīng)過點(diǎn)A、D得到拋物線F′:y=a′x2+b′x+c′,拋物線F′與x軸的另一個(gè)交點(diǎn)為C.且a、b、c滿足了b2=2ac
①求b:b′的值;
②探究四邊形OABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖①,在矩形ABCD中,M為BC上任一點(diǎn),現(xiàn)將三角板放在矩形ABCD上,使三角板的直角頂點(diǎn)P與點(diǎn)M重合,三角板的一邊所在直線過點(diǎn)D,另一邊交AB于F.
(1)如果$\frac{AB}{BM}$=1,求證:PF=PD;
(2)如圖②,移動(dòng)三角板,使定點(diǎn)P始終在AM上,且直角的兩邊與AB、AD交于F、E,若$\frac{AB}{BM}$=$\frac{m}{n}$,請直接寫出$\frac{PF}{PE}$的值;
(3)如圖③,將(2)中的“矩形ABCD”改為“平行四邊形ABCD”,且使原三角板改為鈍角三角形,并使∠FPE=∠D,鈍角的兩邊與AB、AD交于F、E,其他條件不變,問(2)中$\frac{PF}{PE}$的值是否仍然成立?若成立,請給予證明,不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.我市向汶川災(zāi)區(qū)贈(zèng)送270臺(tái)計(jì)算機(jī)并于近期啟運(yùn),經(jīng)與其物流公司聯(lián)系,得知用A型汽車若干輛,剛好裝完;如用B型汽車,可比A型汽車少一輛,但有一輛少裝30臺(tái).已知每輛A型汽車比每輛B型汽車少裝15臺(tái).
(1)求只選用A型汽車或B型汽車裝運(yùn)需要多少輛?
(2)已知A型汽車的運(yùn)費(fèi)是每輛350元,B型汽車的運(yùn)費(fèi)是每輛400元,若運(yùn)送這批計(jì)算機(jī)同時(shí)用這兩種型的汽車,其中B型汽車比A型汽車多用1輛,所需運(yùn)費(fèi)比單獨(dú)用任何一種型號(hào)的汽車都要節(jié)省,按這種方案需A、B兩種型號(hào)的汽車各多少輛?運(yùn)費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.下列各式:3a,1$\frac{2}{3}$a,$\frac{5}$,a×3,3x-1,2a÷b,其中符合書寫要求的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案