【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線CD交⊙O于點D,過點D作⊙O的切線PD交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:DP∥AB;
(2)試猜想線段AE、EF、BF之間的數(shù)量關系,并加以證明;
(3)若AC=6,BC=8,求線段PD的長.
【答案】(1)見解析;(2)BF-AE=EF,見解析;(3)
【解析】
(1)由切線的性質(zhì)可得∠ODP=90°,∠BOD=90°,從而根據(jù)“內(nèi)錯角相等,兩直線平行”即可證明DP∥AB;
(2)先證明△ADE≌△DBF,得到BF=DE,AE=DF,進而根據(jù)線段的運算得到“BF-AE=EF”;
(3)由勾股定理運算得出AD,CE,CD的值,再根據(jù)PD∥AB得到∠PDA=∠ACD,從而證明△PAD∽△PDC,根據(jù)相似比計算得出PD即可.
解:(1)證明:連接OD,
∵PD切⊙O于點D,
∴OD⊥PD,∠ODP=90°
∵∠ACD=∠BCD,∠AOD=2∠ACD,∠BOD=2∠BCD,
∴∠AOD=∠BOD=×180°=90°,
∴∠ODP=∠BOD,
∴PD∥AB
(2)BF-AE=EF,
證明如下:
∵AB是⊙O的直徑
∴∠ADB=∠ADE+∠BDF=90°,
∵AE⊥CD,BF⊥CD
∴∠AED=∠BFD=90°,
∴∠FBD+∠BDF=90°,
∴∠FBD=∠ADE,
∵∠AOD=∠BOD
∴AD=BD
∴△ADE≌△DBF(AAS),
∴BF=DE,AE=DF
∴ BF-AE=DE-DF,
即BF-AE=EF
(3)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACD=∠ACB=45°,
在Rt△ACB中,AB2=AC2+BC2=100,
在Rt△ADB中,AB2=2AD2,
∴AD=5,
在Rt△AEC中,AC2=AE2+CE2,
∴AE=CE=3,
在Rt△AED中,DE==4,
∴CD=CE+DE=7,
∵PD∥AB,
∴∠PDA=∠DAB,
∵∠ACD=∠BCD=∠DAB,
∴∠PDA=∠ACD,
又∵∠P=∠P,
∴△PAD∽△PDC,
∴====,
∴PA=PD+6,
∴=,
∴PD=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,OD⊥BC于點D,過點C作⊙O的切線,交OD的延長線于點E,連接BE.
(1)求證:BE與⊙O相切;
(2)設OE交⊙O于點F,若DF=1,BC=2,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們將拋物線通過平移后得到,且設平移后所得拋物線的頂點依次為,這些頂點均在格點上,我們將這些拋物線稱為“繽紛拋物線”(k為整數(shù)).
(1)的坐標為____________,直接寫出平移后拋物線的解析式為____________(用k表示);
(2)若平移后的拋物線與拋物線交于點A,對稱軸與拋物線交于點B,若,求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點A(6,0),點B為y軸正半軸上一動點,連接AB,以AB為一邊向下作等邊△ABC,連接OC,則OC的最小值( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“母親節(jié)”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行
銷售,并將所得利潤捐給慈善機構.根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量y(個)于銷售單價x(元
/個)之間的對應關系如圖所示.
(1)試判斷y與x之間的函數(shù)關系,并求出函數(shù)關系式;
(2)若許愿瓶的進價為6元/個,按照上述市場調(diào)查銷售規(guī)律,求利潤w(元)與銷售單價x(元/個)之間的
函數(shù)關系式;
(3)若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試求此時這種許愿瓶的銷售單價,并求出
最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知△ABC是邊長為8的等邊三角形,∠EBD=30°,BE=DE,連接AD,點F為AD的中點,連接EF.將△BDE繞點B順時針旋轉(zhuǎn).
(1)如圖2,當點E位于BC邊上時,延長DE交AB于點G.
①求證:BG=DE;
②若EF=3,求BE的長;
(2)如圖3,連接CF,在旋轉(zhuǎn)過程中試探究線段CF與EF之間滿足的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展“祖國在我心中”主題演講比賽,參加選拔比賽的選手的成績(滿分為分),分成五組,制成了如下不完整的統(tǒng)計圖表.
分數(shù)段 | 頻數(shù) | 頻率 |
(1)求分數(shù)在參賽學生的頻率;
(2)求分數(shù)在參賽學生的頻數(shù),并補全頻數(shù)分布直方圖;
(3)成績在分以上的選手中,有三名男生和一名女生,學校從中隨機確定名選手參加市級比賽,求恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形中,點是邊上的動點,連接.
(1)如圖1,點在的延長線上,且.
①求證:;
②如圖2,將繞點逆時針旋轉(zhuǎn)得到對應,射線交于,交于,連接,試探究與之間的數(shù)量關系.
(2)如圖3,若,點是邊上的動點,且,連接,直接寫出的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com