如圖,在銳角△ABC內有一點P,直線AP,BP,CP分別交對邊于Q1,Q2,Q3,且∠PQ1C=∠PQ2A=∠PQ3B.
試問:點P是否必為△ABC的垂心?如果是,請證明;如果不是,請舉反例說明.

【答案】分析:首先假設∠AQ1C=∠AQ2B=∠BQ3C=α,顯然只要證明α=90°,即P是△ABC的垂心即可.因而根據若平面上四點連成四邊形的一個外角等于其內對角,四點共圓.則P、Q1、C、Q2,P、Q2、A、Q3,P、Q3、B、Q1分別四點共圓.連接Q1Q2,根據圓內接四邊形的對角和為180°,并且任何一個外角都等于它的內對角;同弧所對的圓周角相等.則可得到∠CQ2Q1=∠CPQ1=∠CBQ3,即可確定Q2、A、B、Q1四點共圓.觀察圖形根據∠AQ2B與∠AQ1B是同弧所對的圓周角,∠AQ1C與∠AQ1B兩角互補.那么可求出∠AQ1C的度數(shù).問題得解.
解答:證明:設∠AQ1C=∠AQ2B=∠BQ3C=α,
∵∠AQ1C是四邊形PQ3BQ1外角,∠AQ2B是四邊形PQ1CQ2的外角,∠BQ3C是四邊形PQ2AQ3的外角,
∴P、Q1、C、Q2,P、Q2、A、Q3,P、Q3、B、Q1分別四點共圓,
如圖,連接Q1Q2,
∵∠CQ2Q1=∠CPQ1=∠CBQ3,
∴Q2、A、B、Q1四點共圓,
于是∠AQ2B=∠AQ1B,即α=180°-α=α,
∴α=90°,
∴P是△ABC的垂心.
點評:本題考查了三角形垂心與圓,四點共圓的判定與性質,是一道綜合性較強的題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在銳角△ABC中,以BC為直徑的半圓O分別交AB,AC與D、E兩點,且cosA=
3
3
,則S△ADE:S四邊形DBCE的值為( 。
A、
1
2
B、
1
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在銳角△ABC中,a>b>c,以某任意兩個頂點為頂點作矩形,第三個頂點落在以這兩個頂點所確定的對邊上,這樣可以作三個面積相等的矩形,請問這三個矩形的周長大小關系如何?(記ta、tb、tc分別以a、b、c為邊的矩形的周長)答:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖,在銳角△ABC中,AB>AC,AD⊥BC于D,以AD為直徑的⊙O分別交AB,AC于E,F(xiàn),連接DE,DF.
(1)求證:∠EAF+∠EDF=180°;
(2)已知P是射線DC上一個動點,當點P運動到PD=BD時,連接AP,交⊙O于G,連接DG.設∠EDG=∠α,∠APB=∠β,那么∠α與∠β有何數(shù)量關系?試證明你的結論.[在探究∠α與∠β的數(shù)量關系時,必要時可直接運用(1)的結論進行推理與解答]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在銳角△ABC中,∠ABC的平分線交AC于點D,AB邊上的高CE交BD于點M,過點M作BC的垂線段MN,若EC=4,∠BCE=45°,則MN=
 
(結果保留三位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在銳角△ABC中,AB=4,∠BAC=45°.∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點.則BM+MN的最小值是
2
2
2
2

查看答案和解析>>

同步練習冊答案