【題目】直線l1平行于直線l2,直線l3、l4分別與l1l2交于點B、FA、E,點D是直線l3上一動點,DC∥ABl4于點C

1)如圖,當(dāng)點Dl1l2兩線之間運動時,試找出∠BAD∠DEF、∠ADE之間的關(guān)系,并說明理由;

2)當(dāng)點Dl1、l2兩線外側(cè)運動時,試探究∠BAD、∠DEF∠ADE之間的關(guān)系(點DB、F不重合),畫出圖形,給出結(jié)論,不必說明理由.

【答案】(1) ∠BAD+DEF=∠ADE;(2) ①當(dāng)點DBF的延長線上運動時(如圖2),∠BAD=∠ADE+∠DEF;當(dāng)點DFB的延長線上運動時(如圖3),∠DEF=∠ADE+∠BAD

【解析】

1)由AB∥CD,根據(jù)平行線的性質(zhì)得到∠BAD=∠ADC,而l1∥l2,則CD∥EF,得到∠DEF=∠CDE,于是∠BAD+DEF=∠ADE;

2)討論:當(dāng)點DBF的延長線上運動時(如圖2),由(1)得到∠BAD=∠ADC,∠DEF=∠CDE,則∠BAD=∠ADE+∠DEF;當(dāng)點DFB的延長線上運動時(如圖3),∠DEF=∠ADE+∠BAD

1∠BAD+∠DEF=∠ADE

理由如下:(如圖1

∵AB∥CD,

∴∠BAD=∠ADC(兩直線平行,內(nèi)錯角相等),

∵l1∥l2,

∴CD∥EF

∴∠DEF=∠CDE(兩直線平行,內(nèi)錯角相等),

∠BAD+∠DEF=∠ADC+∠CDE

∠BAD+DEF=∠ADE;

2)有兩種情況:

當(dāng)點DBF的延長線上運動時(如圖2),∠BAD=∠ADE+∠DEF

當(dāng)點DFB的延長線上運動時(如圖3),∠DEF=∠ADE+∠BAD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC的垂直平分線EF交∠ABC的平分線BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( 。

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有190張鐵皮做盒子,每張鐵皮可做8個盒身或22個盒底,一個盒身與兩個盒底配成一個完整的盒子,(一張鐵皮只能生產(chǎn)一種產(chǎn)品)

1)向用多少張鐵皮做盒身,多少張鐵皮做盒底,可以正好用完190張鐵皮并制成一批完整的盒子?

2)這批盒子一共有多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小葉與小高欲測量公園內(nèi)某棵樹DE的高度.他們在這棵樹正前方的一座樓亭前的臺階上的點A處測得這棵樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得這棵樹頂端D的仰角為60°.已知點A的高度AB3 m,臺階AC的坡度為1,且B,C,E三點在同一條直線上,那么這棵樹DE的高度為(  )

A. 6 m B. 7 m C. 8 m D. 9 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)低碳生活,人們常選擇以自行車作為代步工具,如圖是一輛自行車的部分幾何示意圖,其中車架檔ACCD的長分別為45 cm60 cm,且它們互相垂直,座桿CE的長為20 cm,點A,C,E在同一條直線上,且∠CAB75°.(參考數(shù)據(jù):sin 75°≈0.966,cos 75°≈0.259,tan 75°≈3.732)

1求車架檔AD的長;

2求車座點E到車架檔AB的距離(結(jié)果精確到1 cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線y=(k<0)經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標(biāo)為(﹣6,4),則AOC的面積為( 。

A. 12 B. 9 C. 6 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為

(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援災(zāi)區(qū),某校愛心活動小組準(zhǔn)備用籌集的資金購買AB兩種型號的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價比A型學(xué)習(xí)用品的單價多10元,用180元購買B型學(xué)習(xí)用品的件數(shù)與用120元購買A型學(xué)習(xí)用品的件數(shù)相同.

1)求AB兩種學(xué)習(xí)用品的單價各是多少元?

2)若購買這批學(xué)習(xí)用品的費用不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村莊計劃建造A,B兩種型號的沼氣池共20個,以解決該村所有農(nóng)戶的燃料問題.兩種型號沼氣池的占地面積和可供使用農(nóng)戶數(shù)見下表:

型號

占地面積

(單位:m2/

可供使用農(nóng)戶數(shù)

(單位:戶/

A

15

18

B

20

30

已知可供建造沼氣池的占地面積不超過365m2,該村農(nóng)戶共有492戶.

(1)如何合理分配建造A,B型號沼氣池的個數(shù)才能滿足條件?滿足條件的方案有幾種?通過計算分別寫出各種方案.

(2)請寫出建造A、B兩種型號的沼氣池的總費用y和建造A沼氣池個數(shù)x之間的函數(shù)關(guān)系式;

(3)若A型號沼氣池每個造價2萬元,B型號沼氣池每個造價3萬元,試說明在(1)中的各種建造方案中,哪種建造方案最省錢,最少的費用需要多少萬元?

查看答案和解析>>

同步練習(xí)冊答案