在平面直角坐標系中,若一束光線從點A(0,2)發(fā)出,經(jīng)x軸反射,過點B(5,3),則這束光從點A到點B所經(jīng)過的路徑的長為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:先過點B作BD⊥x軸于D,由A(0,2),B(5,3),即可得OA=2,BD=3,OD=5,由題意易證得△AOC∽△BDC,根據(jù)相似三角形的對應邊成比例,即可得OA:BD=OC:DC=AC:BC=2:3,又由勾股定理即可求得這束光從點A到點B所經(jīng)過的路徑的長.
解答:如圖,過點B作BD⊥x軸于D,
∵A(0,2),B(5,3),
∴OA=2,BD=3,OD=5,
根據(jù)題意得:∠ACO=∠BCD,
∵∠AOC=∠BDC=90°,
∴△AOC∽△BDC,
∴OA:BD=OC:DC=AC:BC=2:3,
∴OC=5×=2,
∴CD=OD-OC=3,
∴AC==2,BC==3,
∴AC+BC=5,
故選B.
點評:此題考查了相似三角形的判定與性質、勾股定理以及點與坐標的性質.此題難度適中,解此題的關鍵是掌握輔助線的作法,掌握入射光線與反射光線的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案