精英家教網(wǎng)如圖所示,已知⊙O1和⊙O2的半徑分別為5和
13
,它們的公共弦AB=6,求O1O2的長.
分析:本題可將原圖轉(zhuǎn)化成直角三角形求解,連接AO1、AO2形成兩個直角三角形,再根據(jù)勾股定理即可求出O1O2的值.
解答:精英家教網(wǎng)解:連接O1A,O2A,
O1C=
O1A2-AC2
=4,O2C=
13-32
=2,
∴O1O2=4+2=6.
點(diǎn)評:本題考查了相交兩圓的性質(zhì)和直角三角形的性質(zhì),解此類題目要注意將圓的問題轉(zhuǎn)化成三角形的問題再進(jìn)行計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知⊙O1與⊙O2切于點(diǎn)P,外公切線AB與連心線O1O2相交于點(diǎn)C,A、B是切點(diǎn),D是AP延長線上的點(diǎn),滿足
AP
AB
=
AC
AD
=
4
5

求:(1)cosD;(2)SO1SO2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《24.2.3 圓和圓的位置關(guān)系》2009年同步練習(xí)(解析版) 題型:解答題

如圖所示,已知⊙O1和⊙O2的半徑分別為5和,它們的公共弦AB=6,求O1O2的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年安徽省蕪湖市一中自主招生數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知⊙O1與⊙O2切于點(diǎn)P,外公切線AB與連心線O1O2相交于點(diǎn)C,A、B是切點(diǎn),D是AP延長線上的點(diǎn),滿足
求:(1)cosD;(2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年安徽省蕪湖市一中自主招生特長生數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知⊙O1與⊙O2切于點(diǎn)P,外公切線AB與連心線O1O2相交于點(diǎn)C,A、B是切點(diǎn),D是AP延長線上的點(diǎn),滿足
求:(1)cosD;(2)的值.

查看答案和解析>>

同步練習(xí)冊答案