已知,如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(-2,0),點(diǎn)B坐標(biāo)為(0,2),點(diǎn)E為線段AB上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A,B重合),以E為頂點(diǎn)作∠OET=45°,射線ET交線段0B于點(diǎn)F,C為y軸正半軸上一點(diǎn),且OC=AB,拋物線y=-x2+mx+n的圖象經(jīng)過(guò)A,C兩點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時(shí),求此時(shí)點(diǎn)E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點(diǎn)D,P為(1)中拋物線上一動(dòng)點(diǎn),直線PE交x軸于點(diǎn)G,在直線EF上方的拋物線上是否存在一點(diǎn)P,使得△EPF的面積是△EDG面積的(2+1)倍?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)首先求出點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式;
(2)利用三角形外角性質(zhì),易證∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時(shí),有三種情況,需要分類討論,注意不要漏解;
(4)本問(wèn)關(guān)鍵是利用已知條件求得點(diǎn)P的縱坐標(biāo),要點(diǎn)是將△EPF與△EDG的面積之比轉(zhuǎn)化為線段之比.如圖④所示,首先證明點(diǎn)E為DF的中點(diǎn),然后作x軸的平行線FN,則△EDG≌△EFN,從而將△EPF與△EDG的面積之比轉(zhuǎn)化為PE:NE;過(guò)點(diǎn)P作x軸垂線,可依次求出線段PT、PM的長(zhǎng)度,從而求得點(diǎn)P的縱坐標(biāo);最后解一元二次方程,確定點(diǎn)P的坐標(biāo).
解答:解:(1)如圖①,∵A(-2,0)B(0,2)
∴OA=OB=2,
∴AB2=OA2+OB2=22+22=8
∴AB=2,
∵OC=AB
∴OC=2,即C(0,2
又∵拋物線y=-x2+mx+n的圖象經(jīng)過(guò)A、C兩點(diǎn)
則可得,
解得
∴拋物線的表達(dá)式為y=-x2-x+2

(2)∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°
又∵∠BEO=∠BAO+∠AOE=45°+∠AOE,
∠BEO=∠OEF+∠BEF=45°+∠BEF,
∴∠BEF=∠AOE.

(3)當(dāng)△EOF為等腰三角形時(shí),分三種情況討論
①當(dāng)OE=OF時(shí),∠OFE=∠OEF=45°
在△EOF中,∠EOF=180°-∠OEF-∠OFE=180°-45°-45°=90°
又∵∠AOB=90°
則此時(shí)點(diǎn)E與點(diǎn)A重合,不符合題意,此種情況不成立.
②如圖2,當(dāng)FE=FO時(shí),
∠EOF=∠OEF=45°
在△EOF中,
∠EFO=180°-∠OEF-∠EOF=180°-45°-45°=90°
∴∠AOF+∠EFO=90°+90°=180°
∴EF∥AO,
∴∠BEF=∠BAO=45°
又∵由(2)可知,∠ABO=45°
∴∠BEF=∠ABO,
∴BF=EF,
EF=BF=OB=×2=1 
∴E(-1,1)
③如圖③,當(dāng)EO=EF時(shí),過(guò)點(diǎn)E作EH⊥y軸于點(diǎn)H
在△AOE和△BEF中,
∠EAO=∠FBE,EO=EF,∠AOE=∠BEF
∴△AOE≌△BEF,
∴BE=AO=2
∵EH⊥OB,
∴∠EHB=90°,
∴∠AOB=∠EHB
∴EH∥AO,
∴∠BEH=∠BAO=45°
在Rt△BEH中,∵∠BEH=∠ABO=45°
∴EH=BH=BEcos45°=2×=
∴OH=OB-BH=2-∴E(-,2-
綜上所述,當(dāng)△EOF為等腰三角形時(shí),所求E點(diǎn)坐標(biāo)為E(-1,1)或E(-,2-).

(4)假設(shè)存在這樣的點(diǎn)P.
當(dāng)直線EF與x軸有交點(diǎn)時(shí),由(3)知,此時(shí)E(-,2-).
如圖④所示,過(guò)點(diǎn)E作EH⊥y軸于點(diǎn)H,則OH=FH=2-
由OE=EF,易知點(diǎn)E為Rt△DOF斜邊上的中點(diǎn),即DE=EF,
過(guò)點(diǎn)F作FN∥x軸,交PG于點(diǎn)N.
易證△EDG≌△EFN,因此S△EFN=S△EDG,
依題意,可得
S△EPF=(2+1)S△EDG=(2+1)S△EFN
∴PE:NE=(2+1):1.
過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,分別交FN、EH于點(diǎn)S、T,則ST=TM=2-
∵FN∥EH,
∴PT:ST=PE:NE=2+1,
∴PT=(2+1)•ST=(2+1)(2-)=3-2;
∴PM=PT+TM=2,即點(diǎn)P的縱坐標(biāo)為2
∴-x2-x+2=2,
解得x1=0,x2=-1,
∴P點(diǎn)坐標(biāo)為(0,2)或(-1,2).
綜上所述,在直線EF上方的拋物線上存在點(diǎn)P,使得△EPF的面積是△EDG面積的(2+1)倍;
點(diǎn)P的坐標(biāo)為(0,2)或(-1,2).
點(diǎn)評(píng):本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、等腰三角形、直角三角形、全等三角形與相似三角形的性質(zhì)等重要的知識(shí)點(diǎn),難度較大.第(2)問(wèn)注意分類討論思想的應(yīng)用,注意不要漏解;第(3)問(wèn)中,將三角形面積之比轉(zhuǎn)化為線段之比,這是解題的重要技巧,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個(gè)答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆重慶萬(wàn)州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開(kāi)始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開(kāi)始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動(dòng)過(guò)程中, 四邊形OPEM是什么四邊形?請(qǐng)說(shuō)明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
若有,請(qǐng)求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個(gè)時(shí),乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個(gè)答案)

查看答案和解析>>

同步練習(xí)冊(cè)答案