如圖,直線a∥b,如果∠1=45°,那么∠2等于(  )
分析:先根據(jù)平行線的性質(zhì)求出∠3的度數(shù),再由平角的定義即可得出結(jié)論.
解答:解:∵直線a∥b,∠1=45°,
∴∠3=45°,
∴∠2=180°-45°=135°.
故選C.
點(diǎn)評:本題考查的是平行線的性質(zhì),用到的知識點(diǎn)為:兩直線平行,同位角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,正方形ABCD是一個(gè)6×6網(wǎng)格電子屏的示意圖,其中每個(gè)小正方形的邊長為1.位于AD中點(diǎn)處的光點(diǎn)P按圖2的程序移動.
(1)請?jiān)趫D1中畫出光點(diǎn)P經(jīng)過的路徑;
(2)以A為原點(diǎn),AD與AB所在直線分別為x、y軸,試判斷光點(diǎn)P的路徑所圍成的圖形是否為中心對稱圖形,如果是,請指出對稱中心坐標(biāo);如果不是,請說明理由;
(3)求光點(diǎn)P經(jīng)過的路徑總長(結(jié)果保留π).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的頂點(diǎn)A、B在x軸的負(fù)半軸上,定點(diǎn)C、D在第二象限.將正方形ABCD繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),B、C、D的對應(yīng)點(diǎn)分別為B1、C1、D1,且D1、精英家教網(wǎng)C1、O三點(diǎn)在一條直線上.記點(diǎn)D1的坐標(biāo)是(m,n).
(1)設(shè)∠DAD1=30°,n=
3
,
①求正方形ABCD的邊長;
②求直線D1C1的解析式;
(2)若∠DAD1<90°,m,n滿足m+n=-2,點(diǎn)C1和點(diǎn)O之間的距離是
5
,求直線D1C1的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點(diǎn)P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是
 

精英家教網(wǎng)
(2)閱讀材料:如圖,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
1
2
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
精英家教網(wǎng)
解答下列問題:
如圖,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
①求拋物線和直線AB的解析式;
②點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
③點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動點(diǎn),是否存在一點(diǎn)P,使S△PAB=
9
8
S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)A的縱坐標(biāo)、點(diǎn)B的橫坐標(biāo)如圖精英家教網(wǎng)所示.
(1)求直線AB的解析式;
(2)過原點(diǎn)O的直線把△ABO分成面積相等的兩部分,直接寫出這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠ABD=90°,
(1)點(diǎn)B在直線
AB(或BD)
AB(或BD)
上,點(diǎn)D在直線
AC
AC
外;
(2)直線
AD
AD
與直線
AB
AB
相交于點(diǎn)A,點(diǎn)D是直線
AD
AD
與直線
BD
BD
的交點(diǎn),也是直線
AD
AD
與直線
CD
CD
的交點(diǎn),又是直線
BD
BD
與直線
CD
CD
的交點(diǎn);
(3)直線
BD
BD
⊥直線
AB
AB
,垂足為點(diǎn)
B
B
;
(4)過點(diǎn)D有且只有
條直線與直線AC垂直.

查看答案和解析>>

同步練習(xí)冊答案