△ABC的頂點C的坐標(biāo)是(0,5),A、B兩點的坐標(biāo)是方程組的解,且A點在第一象限.

(1)求A、B兩點的坐標(biāo);

(2)畫出△ABC,并判定它的形狀.

答案:
解析:

  (1)設(shè)x=4a,則y=3a,∴a2=1即a=±1,∴x=4,y=3:x=-4,y=-3,而A在第一象限,∴A(4,3),B(-4,-3)

  (2)∵AC2=20,BC2=80,AB2=100,∴AC2+BC2=AB2∴△ABC是以∠ACB為直角的直角三角形.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點A1(2,-3).
(1)請直接寫出點B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C順時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出(1)中平移時,線段AB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•武漢模擬)在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.
(1)請直接寫出點A1,B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C逆時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中C點坐(1,2)
(1)寫出點A的坐標(biāo)
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,請畫出平移后的圖形;
(3)寫出此時點A′的坐標(biāo)為
(0,0)
(0,0)
;
(4)若AB邊上有一點M(a,b),平移后對應(yīng)的點M′的坐標(biāo)為
(a-2,b+1)
(a-2,b+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.
(1)請直接寫出點A1,B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C逆時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省武漢市四月調(diào)考九年級數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-2,3),B(-4,-1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.
(1)請直接寫出點A1,B1,C1的坐標(biāo);
(2)將△ABC繞坐標(biāo)點C逆時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)直接寫出△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案