如圖,有兩棵樹(shù),一棵高10米,另一棵高4米,兩樹(shù)相距8米.一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行多少米?

 

【答案】

10m

【解析】

試題分析:根據(jù)“兩點(diǎn)之間線(xiàn)段最短”可知:小鳥(niǎo)沿著兩棵樹(shù)的樹(shù)梢進(jìn)行直線(xiàn)飛行,所行的路程最短,運(yùn)用勾股定理可將兩點(diǎn)之間的距離求出.

如圖,設(shè)大樹(shù)高為AB=10m,

小樹(shù)高為CD=4m,

過(guò)C點(diǎn)作CE⊥AB于E,則EBDC是矩形,連接AC,

∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,

在Rt△AEC中,,

故小鳥(niǎo)至少飛行10m.

考點(diǎn):本題考查的是勾股定理的應(yīng)用

點(diǎn)評(píng):善于觀(guān)察題目的信息構(gòu)造圖形是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,有兩棵樹(shù),一棵高8米,另一棵高2米,兩樹(shù)相距8米,一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,則它至少要飛行
10
米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有兩棵樹(shù),一棵高6米,另一棵高2米,兩樹(shù)相距3米,一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,至少飛了
 
米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有兩棵樹(shù),一棵高8米,另一棵高2米,兩樹(shù)相距8米,一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一
棵樹(shù)的樹(shù)梢,則它至少要飛行( 。┟祝
A、6B、8C、10D、12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有兩棵樹(shù),一棵高14m,另一棵高10m,兩樹(shù)相距5m.一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,至少飛了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有兩棵樹(shù),一棵高9米,另一棵高4米,兩樹(shù)相距12米.一只小鳥(niǎo)從一
棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,至少飛了多少米?( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案