如圖,小聰用一塊有一個銳角為30°的直角三角板測量樹高,已知小聰和樹都與地面垂直,且相距3
3
米,小聰身高AB為1.7米,求這棵樹的高度.
分析:先根據(jù)題意得出AD的長,在Rt△ACD中利用銳角三角函數(shù)的定義求出CD的長,由CE=CD+DE即可得出結論.
解答:解:由題意,易知∠CAD=30°,∠CDA=90°,AD=3
3
,CE⊥BE,DE=AB=1.7米,
tan∠CAD=
CD
AD
,
CD=
3
3
×3
3
=3
.     
∴CE=3+1.7=4.7.       
答:這棵樹的高度為4.7米.
點評:本題考查的是解直角三角形在實際生活中的應用,熟知銳角三角函數(shù)的定義是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準確地畫出正方形.
小聰和小明各給出了一種想法,請你在Ⅱa和Ⅱb的兩個問題中選擇一個你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BD和CE的長,從而確定D點和E點,再畫正方形DEFG就容易了.
設△ABC的邊長為2,請你幫小聰求出正方形的邊長.(結果用含根號的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長也能畫出正方形.具體作法是:
①在AB邊上任取一點G′,如圖作正方形G′D′E′F′;
②連接BF′并延長交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四精英家教網(wǎng)邊形DEFG即為所求.
你認為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第19章《相似形》中考題集(14):19.6 相似三角形的性質(解析版) 題型:解答題

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準確地畫出正方形.
小聰和小明各給出了一種想法,請你在Ⅱa和Ⅱb的兩個問題中選擇一個你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BD和CE的長,從而確定D點和E點,再畫正方形DEFG就容易了.
設△ABC的邊長為2,請你幫小聰求出正方形的邊長.(結果用含根號的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長也能畫出正方形.具體作法是:
①在AB邊上任取一點G′,如圖作正方形G′D′E′F′;
②連接BF′并延長交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.
你認為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第29章《相似形》中考題集(15):29.5 相似三角形的性質(解析版) 題型:解答題

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準確地畫出正方形.
小聰和小明各給出了一種想法,請你在Ⅱa和Ⅱb的兩個問題中選擇一個你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BD和CE的長,從而確定D點和E點,再畫正方形DEFG就容易了.
設△ABC的邊長為2,請你幫小聰求出正方形的邊長.(結果用含根號的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長也能畫出正方形.具體作法是:
①在AB邊上任取一點G′,如圖作正方形G′D′E′F′;
②連接BF′并延長交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.
你認為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第24章《圖形的相似》中考題集(15):24.3 相似三角形(解析版) 題型:解答題

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準確地畫出正方形.
小聰和小明各給出了一種想法,請你在Ⅱa和Ⅱb的兩個問題中選擇一個你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BD和CE的長,從而確定D點和E點,再畫正方形DEFG就容易了.
設△ABC的邊長為2,請你幫小聰求出正方形的邊長.(結果用含根號的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長也能畫出正方形.具體作法是:
①在AB邊上任取一點G′,如圖作正方形G′D′E′F′;
②連接BF′并延長交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.
你認為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年中考數(shù)學模擬試卷(六)(解析版) 題型:解答題

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準確地畫出正方形.
小聰和小明各給出了一種想法,請你在Ⅱa和Ⅱb的兩個問題中選擇一個你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BD和CE的長,從而確定D點和E點,再畫正方形DEFG就容易了.
設△ABC的邊長為2,請你幫小聰求出正方形的邊長.(結果用含根號的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長也能畫出正方形.具體作法是:
①在AB邊上任取一點G′,如圖作正方形G′D′E′F′;
②連接BF′并延長交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.
你認為小明的作法正確嗎?說明理由.

查看答案和解析>>

同步練習冊答案