【題目】如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時測得小船C的俯角是∠FDC=30°.若小華的眼睛與地面的距離是米,BG=1.5米,BG平行于AC所在的直線,迎水坡i=43,坡長AB=10米,點A、BC、D、FG在同一平面內(nèi),則此時小船C到岸邊的距離CA的長是多少?(結(jié)果保留根號)

【答案】CA的長約是(8﹣4.5)米.

【解析】試題分析:過點BBEAC于點E,延長DGCA于點H,根據(jù)迎水坡AB的坡度i=43,坡長AB=10米,得出DH,CH的長,進而利用tanDCH==tan30°,求出CA即可.

試題解析:過點BBEAC于點E,延長DGCA于點H,得RtABE和矩形BEHG

i=,AB=10米,

BE=8,AE=6

DG=,BG=1.5

DH=DG+GH=+8,

AH=AE+EH=6+1.5=7.5

RtCDH中,

∵∠C=FDC=30°,DH=8+,tan30°=,

CH=8+3

又∵CH=CA+7.5,

8+3=CA+7.5

CA=84.5(米).

答:CA的長約是(84.5)米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,中點,過點的直線分別與,交于點,,連接于點,連接,.若,,則下列結(jié)論:

,;

;

四邊形是菱形;

其中正確結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校舉辦大愛鎮(zhèn)江征文活動,小明為此次活動設(shè)計了一個以三座山為背景的圖標(biāo)(如圖),現(xiàn)用紅、黃兩種顏色對圖標(biāo)中的AB、C三塊三角形區(qū)域分別涂色,一塊區(qū)域只涂一種顏色.

1)請用樹狀圖列出所有涂色的可能結(jié)果;

2)求這三塊三角形區(qū)域中所涂顏色是兩塊黃色、一塊紅色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.

(1)求足球和籃球的單價各是多少元?

(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計圖中,m=   ,n=   

(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的一邊AB在直尺一邊所在直線MN上,點O是對角線AC、BD的交點,過點OOEMN于點E

1)如圖1,線段ABOE之間的數(shù)量關(guān)系為   .(請直接填結(jié)論)

2)保證點A始終在直線MN上,正方形ABCD繞點A旋轉(zhuǎn)θ0θ90°),過點 BBFMN于點F

①如圖2,當(dāng)點O、B兩點均在直線MN右側(cè)時,試猜想線段AFBFOE之間存在怎樣的數(shù)量關(guān)系?請說明理由.

②如圖3,當(dāng)點OB兩點分別在直線MN兩側(cè)時,此時①中結(jié)論是否依然成立呢?若成立,請直接寫出結(jié)論;若不成立,請寫出變化后的結(jié)論并證明.

③當(dāng)正方形ABCD繞點A旋轉(zhuǎn)到如圖4的位置時,線段AFBFOE之間的數(shù)量關(guān)系為   .(請直接填結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點的坐標(biāo)為(10,0),對角線OB、AC相交于D點,雙曲線y=(x0)經(jīng)過D點,交BC的延長線于E點,且OBAC=160,有下列四個結(jié)論:

①雙曲線的解析式為y=(x0);

②E點的坐標(biāo)是(5,8);

③sinCOA=

④AC+OB=12

其中正確的結(jié)論有 (填上序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖,圖象過點(﹣10),對稱軸為直線x=2,下列結(jié)論:

4a+b=09a+c3b;8a+7b+2c0④當(dāng)x﹣1時,y的值隨x值的增大而增大.其中正確的結(jié)論有 (填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L軸、軸分別交于兩點,在y軸上有一點,動點MA點出發(fā)以每秒1個單位的速度沿射線AO勻速運動.

1)點A的坐標(biāo): ;點B的坐標(biāo): ;

2)求△NOM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

3)當(dāng)為何值時,,求出此時點M的坐標(biāo);

查看答案和解析>>

同步練習(xí)冊答案