分析 根據(jù)∠AOB=45°求出直線OA的解析式,然后與拋物線解析式聯(lián)立求出有一個公共點(diǎn)時的k值,即為一個交點(diǎn)時的最大值,再求出拋物線經(jīng)過點(diǎn)B時的k的值,即為一個交點(diǎn)時的最小值,然后寫出k的取值范圍即可.
解答 解:由圖可知,∠AOB=45°,
∴直線OA的解析式為y=x,
聯(lián)立$\left\{\begin{array}{l}{y=x}\\{y=\frac{1}{2}{x}^{2}+k}\end{array}\right.$消掉y得,
x2-2x+2k=0,
△=b2-4ac=(-2)2-4×1×2k=0,
即k=$\frac{1}{2}$時,拋物線與OA有一個交點(diǎn),
此交點(diǎn)的橫坐標(biāo)為1,
∵點(diǎn)B的坐標(biāo)為(2,0),
∴OA=2,
∴點(diǎn)A的坐標(biāo)為($\sqrt{2}$,$\sqrt{2}$),
∴交點(diǎn)在線段AO上;
當(dāng)拋物線經(jīng)過點(diǎn)B(2,0)時,$\frac{1}{2}$×4+k=0,
解得k=-2,
∴要使拋物線y=$\frac{1}{2}$x2+k與扇形OAB的邊界總有兩個公共點(diǎn),實(shí)數(shù)k的取值范圍是-2<k<$\frac{1}{2}$.
故答案為:-2<k<$\frac{1}{2}$
點(diǎn)評 本題考查了二次函數(shù)的性質(zhì),主要利用了聯(lián)立兩函數(shù)解析式確定交點(diǎn)個數(shù)的方法,根據(jù)圖形求出有一個交點(diǎn)時的最大值與最小值是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b是正數(shù) | B. | b-a是負(fù)數(shù) | C. | ab是正數(shù) | D. | $\frac{a}$是負(fù)數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com