【題目】(2017湖南省長沙市,第12題,3分)如圖,將正方形ABCD折疊,使頂點ACD邊上的一點H重合(H不與端點C,D重合),折痕交AD于點E,交BC于點F,邊AB折疊后與邊BC交于點G.設(shè)正方形ABCD的周長為m,CHG的周長為n,則的值為(  )

A. B. C. D. H點位置的變化而變化

【答案】B

【解析】解:連接AH、AG,作AMHGM

EA=EH,∴∠1=∠2.

∵∠EAB=∠EHG=90°,∴∠HAB=∠AHG

DHAB,∴∠DHA=∠HAB=∠AHM

AH=AH,∠D=∠AMH=90°,∴△AHD≌△AHM,∴DH=HM,AD=AM

AM=AB,AG=AG,∴Rt△AGM≌Rt△AGB,∴GM=GB,

∴△GCH的周長=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC

∵四邊形ABCD的周長=m=4BC,∴故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點A34)是反比例函數(shù)圖象上一點,則下列說法正確的是( 。

A. 圖象分別位于二、四象限B. 點(2,﹣6)在函數(shù)圖象上

C. 當(dāng)x0時,yx的增大而減小D. 當(dāng)y≤4時,x≥3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是邊長為12的正三角形,AD是邊BC上的高線,CF是外角ACE的平分線,點P是邊BC上的一個動點(與點B,C不重合),∠APQ =60°,射線PQ分別與邊AC,射線CF交于點NQ

(1)求證:△ABP∽△PCN;

(2)不管點P運動到何處,在不添輔助線的情況下,除第(1)小題中的一對相似三角形外,請寫出圖中其它的所有相似三角形;

(3)當(dāng)點PBD的中點運動到DC的中點時,點N都隨著點P的運動而運動.在此過程中,試探究:能否求出點N運動的路徑長?若能,請求出這個長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在直線y=x-1上,設(shè)過點P的直線交拋物線y=x2A(a,a2),B(b,b2)兩點,當(dāng)滿足PA=PB時,稱點P優(yōu)點”.

(1)當(dāng)a+b=0時,求優(yōu)點”P的橫坐標(biāo);

(2)優(yōu)點”P的橫坐標(biāo)為3,求式子18a-9b的值;

(3)小安演算發(fā)現(xiàn):直線y=x-1上的所有點都是優(yōu)點,請判斷小安發(fā)現(xiàn)是否正確?如果正確,說明理由;如果不正確,舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,A,B兩個轉(zhuǎn)盤被分成幾個面積相等的扇形,并且在每個扇形內(nèi)標(biāo)上數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤后,如果指針指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一個扇形內(nèi)為止.

1)只轉(zhuǎn)動A轉(zhuǎn)盤,轉(zhuǎn)盤停止后指針指向數(shù)字2的概率.

2)如果同時轉(zhuǎn)動AB兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,將兩個指針?biāo)傅臄?shù)字相加,那么和是偶數(shù)的概率是多少,用樹形圖或表格說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)發(fā)現(xiàn):如圖1,點A為線段BC外一動點,且BC=a,AB=b.當(dāng)點A位于什么上時,線段AC的長取得最大值,且最大值為多少(用含a,b的式子表示)

(2)應(yīng)用:點A為線段BC外一動點,且BC=4,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.

①請找出圖中與BE相等的線段,并說明理由;

②直接寫出線段BE長的最大值.

(3)拓展:如圖3,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(6,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級男同學(xué)的體育考試準(zhǔn)備情況.隨機抽取部分男同學(xué)進行了1000米跑測試按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學(xué)校繪制了如下不完整的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:

1)扇形統(tǒng)計圖中良好所對應(yīng)的圓心角度數(shù)是   ;請補全條形統(tǒng)計圖;

2)該校九年級有600名男生,請估計成績未達到良好的有多少名?

3)某班甲、乙兩位成績獲優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運動會1000米比賽,預(yù)賽分為A,B,C,D四組進行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三體育考試選擇項目中,選擇籃球項目和排球項目的學(xué)生比較多為了解學(xué)生掌握籃球技巧和排球技巧的水平情況,進行了抽樣調(diào)查,過程如下,請補充完整.

收集數(shù)據(jù)從選擇籃球和排球的學(xué)生中各隨機抽取16人,進行了體育測試,測試成績十分制如下:

整理、描述數(shù)據(jù)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

10

排球

1

1

2

7

5

籃球

說明:成績分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格

分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

項目

平均數(shù)

中位數(shù)

眾數(shù)

排球

10

籃球

得出結(jié)論

如果全校有160人選擇籃球項目,達到優(yōu)秀的人數(shù)約為______人;

初二年級的小明和小軍看到上面數(shù)據(jù)后,小明說:排球項目整體水平較高小軍說:籃球項目整體水平較高.

你同意______的看法,理由為______至少從兩個不同的角度說明推斷的合理性

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017安徽。┤鐖D,游客在點A處做纜車出發(fā),沿ABD的路線可至山頂D處,假設(shè)ABBD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長.

(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41)

查看答案和解析>>

同步練習(xí)冊答案