(2009•濟南)“五一”期間,我市某街道辦事處舉行了“迎全運,促和諧”中青年籃球友誼賽.獲得男子籃球冠軍球隊的五名主力隊員的身高如下表:(單位:厘米)
號碼4791023
身高178180182181179
則該隊主力隊員身高的方差是    厘米2
【答案】分析:先計算出身高的平均數(shù),再根據(jù)方差的公式計算.
解答:解:這五個數(shù)的平均數(shù)是=180,
依據(jù)方差的計算公式可得這五個數(shù)的方差是:
S2=[(178-180)2+(180-180)2+(182-180)2+(181-180)2+(179-180)2],
=×10=2(cm2).
點評:本題考查了方差的知識,一些同學對方差的公式記不準確或計算粗心而出現(xiàn)錯誤.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年6月江蘇省淮安市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•濟南)已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最。埱蟪鳇cP的坐標;
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省黃岡市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•濟南)已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最小.請求出點P的坐標;
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年山東省濰坊市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2009•濟南)已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最小.請求出點P的坐標;
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•濟南)已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最。埱蟪鳇cP的坐標;
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山東省濟南市中考數(shù)學試卷(解析版) 題型:解答題

(2009•濟南)已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最。埱蟪鳇cP的坐標;
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案