【題目】如圖是拋物線 y=ax+bx+c 的一部分,其對稱軸為直線 x=2,若其與 x 軸的一個交點為(5,0),則由圖象可知,不等式 ax+bx+c<0 的解集是________

【答案】﹣1<x<5.

【解析】

先根據(jù)拋物線的對稱性得到A點坐標(biāo)(-1,0),由y=ax2+bx+c<0得函數(shù)值為負數(shù),即拋物線在x軸下方,然后找出對應(yīng)的自變量的取值范圍即可得到不等式ax2+bx+c<0的解集.

解:對稱軸為直線x=2,
拋物線與x軸的另一個交點AB(5,0)關(guān)于直線x=2對軸,
∴A(-1,0).
不等式ax2+bx+c<0,即y=ax2+bx+c<0,
拋物線y=ax2+bx+c的圖形在x軸下方,
∴﹣1<x<5.
故答案為﹣1<x<5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

(1)求y關(guān)于x的函數(shù)關(guān)系式;

(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數(shù)根

(1)求k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的一條弦,C、DO上的兩個動點,且在AB弦的異側(cè),連接CD

1)若AC=BC,AB平分∠CBD,求證:AB=CD;

2)若∠ADB=60°,O的半徑為1,求四邊形ACBD的面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù),回答下列問題:

1)求出此拋物線的對稱軸和頂點坐標(biāo);

2)寫出拋物線與軸交點、的坐標(biāo),與軸的交點的坐標(biāo);

3)寫出函數(shù)的最值和增減性;

4取何值時,①,②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點從點沿向點的速度運動,同時點從點沿向點的速度運動(點運動到點停止),在運動的過程中,四邊形的面積的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞頂點C旋轉(zhuǎn)得到A′B′C,且點B剛好落在A′B′上.若∠A=25°,∠BCA′=45°,則∠A′BA等于( )

A. 40°B. 35°C. 30°D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4,n)B(2,﹣4)是一次函數(shù)ykx+b和反比例函數(shù)y的圖象的兩個交點.

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20179月,我國中小學(xué)生迎來了新版教育部統(tǒng)編義務(wù)教育語文教科書,本次統(tǒng)編本教材最引人關(guān)注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展最受歡迎的傳統(tǒng)文化經(jīng)典著作調(diào)查,隨機調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:

(1)本次一共調(diào)查了   名學(xué)生;

(2)請將條形統(tǒng)計圖補充完整;

(3)某班語文老師想從這四大名著中隨機選取兩部作為學(xué)生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.

查看答案和解析>>

同步練習(xí)冊答案