用下列線段作正方形,不能作出正方形的是

[  ]

A.以3cm為邊長

B.以4cm為對角線

C.以4cm為對角線,2cm為邊長

D.以8cm為周長

答案:C
解析:

若以2cm為邊長,則對角線長應(yīng)為cm,而不是4cm.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點C是線段AB上的一個動點,AB=1,分別以AC和CB為一邊作正方形,用S表示這兩個正方形的面積之和,下列判斷正確的是(  )
A、當(dāng)C是AB的中點時,S最小B、當(dāng)C是AB的中點時,S最大C、當(dāng)C為AB的三等分點時,S最小D、當(dāng)C為AB的三等分點時,S最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•博野縣模擬)閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于
2
2

請你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•南開區(qū)一模)閱讀下面材料:小明遇到這樣一個問題:如圖1,△ABO和△CBO均為等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.小明是這樣思考的:要解決這個問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)成一個三角形,在計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而等到的△BCE即時以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
(I)請你回答:圖2中△BCE的面積等于
2
2

(II)請你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:如圖3,已知ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年陜西省中考模擬數(shù)學(xué)試卷(5)(金臺中學(xué) 楊宏舉)(解析版) 題型:選擇題

(2007•聊城)如圖,點C是線段AB上的一個動點,AB=1,分別以AC和CB為一邊作正方形,用S表示這兩個正方形的面積之和,下列判斷正確的是( )

A.當(dāng)C是AB的中點時,S最小
B.當(dāng)C是AB的中點時,S最大
C.當(dāng)C為AB的三等分點時,S最小
D.當(dāng)C為AB的三等分點時,S最大

查看答案和解析>>

同步練習(xí)冊答案