如圖,已知△ABC,D,E分別是AB,AC邊上的點.AD=3cm,AB=8cm,AC=10cm.若△ADE∽△ABC,則AE的值為


  1. A.
    數(shù)學公式cm
  2. B.
    數(shù)學公式cm或數(shù)學公式cm
  3. C.
    數(shù)學公式cm或數(shù)學公式cm
  4. D.
    數(shù)學公式cm
C
分析:先連接DE,由于△ADE∽△ABC,利用相似三角形的性質,可得AD:AB=AE:AC或AD:AC=AE:AB,代入數(shù)值計算即可.
解答:解:連接DE,
∵△ADE∽△ABC,
∴AD:AB=AE:AC或AD:AC=AE:AB,
∴3:8=AE:10或3:10=AE:8,
∴AE=
故選C.
點評:本題考查了相似三角形的性質,注意分情況討論的思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC的三個頂點分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請在圖中作出△ABC關于直線x=-1的軸對稱圖形△DEF(A、B、C的對應點分別是D、E、F),并直接寫出D、E、F的坐標;
(2)求四邊形ABED的面積.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,已知△ABC和△CDE均為等邊三角形,且點B、C、D在同一條直線上,連接AD、BE,交CE和AC分別于G、H點,連接GH.
(1)請說出AD=BE的理由;
(2)試說出△BCH≌△ACG的理由;
(3)試猜想:△CGH是什么特殊的三角形,并加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知△ABC,∠ACB=90°,AC=BC,點E、F在AB上,∠ECF=45°.
(1)求證:△ACF∽△BEC;
(2)設△ABC的面積為S,求證:AF•BE=2S;
(3)試判斷以線段AE、EF、FB為邊的三角形的形狀并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、(1)已知線段a,h,用直尺和圓規(guī)作等腰三角形ABC,底邊BC=a,BC邊上的高為h(要求尺規(guī)作圖,不寫作法和證明)
(2)如圖,已知△ABC,請作出△ABC關于X軸對稱的圖形.并寫出A、B、C關于X軸對稱的點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,已知△ABC是銳角三角形,且∠A=50°,高BE、CF相交于點O,求∠BOC的度數(shù).

查看答案和解析>>

同步練習冊答案