【題目】某日6時至10時,某交易平臺上一種水果的每千克售價、每千克成本與交易時間之間的關系分別如圖1、圖2所示(圖1、圖2中的圖象分別是線段和拋物線,其中點P是拋物線的頂點).在這段時間內(nèi),出售每千克這種水果收益最大的時刻是_____ ,此時每千克的收益是_________
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為15m的住房墻,另外三邊用27m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長,寬分別為多少米時,豬舍面積為96m2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
①AD_____AN(填“>”,“=”或“<”);
②AB=8,ON=1,⊙O的半徑為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,P是直線y=2上的一個動點,⊙P的半徑為1,直線OQ切⊙P于點Q,則線段OQ取最小值時,Q點的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是矩形ABCD邊AB上一動點(不與點B重合),過點E作EF⊥DE交BC于點F,連接DF,已知AB=4cm,AD=2cm,設A,E兩點間的距離為xcm,△DEF面積為ycm2.
小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小明的探究過程,請補充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過取點、畫圖、測量、分析,得到了x與y的幾組值,如表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y/cm2 | 4.0 | 3.7 | 3.9 | 3.8 | 3.3 | 2.0 | … |
(說明:補全表格時相關數(shù)值保留一位小數(shù))
(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當△DEF面積最大時,AE的長度為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為2,中心為M,⊙O的半徑為r,圓心O在射線BD上運動,⊙O與邊CD僅有一個公共點E.
(1)如圖1,若圓心O在線段MD上,點M在⊙O上,OM=DE,判斷直線AD與⊙O的位置關系,并說明理由;
(2)如圖2,⊙O與邊AD交于點F,連接MF,過點M作MF的垂線與邊CD交于點G,若,設點O與點M之間的距離為,EG=,當時,求的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過點A(1,0),B(4,0)與軸交于點C.
(1)求拋物線的解析式;
(2)如圖①,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.
(3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與雙曲線相交于點.
(1)求反比例函數(shù)的表達式:
(2)畫出直線和雙曲線的示意圖;
(3)直接寫出的解集______;
(4)若點是坐標軸負半軸上一點,且滿足.直接寫出點的坐標______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明利用課余時間回收廢品,將賣得的錢去購買5本大小不同的兩種筆記本,要求共花錢不超過28元,且購買的筆記本的總頁數(shù)不低于340頁,兩種筆記本的價格和頁數(shù)如下表.為了節(jié)約資金,小明應選擇哪一種購買方案?請說明理由.
大筆記本 | 小筆記本 | |
價格(元/本) | 6 | 5 |
頁數(shù)(頁/本) | 100 | 60 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com