【題目】下列計(jì)算正確的是(
A.x+x2=x3
B.x2x3=x6
C.(x32=x6
D.x9÷x3=x3

【答案】C
【解析】解:A、原式不能合并,錯(cuò)誤; B、原式=x5 , 錯(cuò)誤;
C、原式=x6 , 正確;
D、原式=x6 , 錯(cuò)誤.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解同底數(shù)冪的乘法的相關(guān)知識(shí),掌握同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù)),以及對同底數(shù)冪的除法的理解,了解同底數(shù)冪的除法法則:am÷an=am-n(a≠0,m,n都是正整數(shù),且m>n).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年下半年開始,不同品牌的共享單車出現(xiàn)在城市的大街小巷.現(xiàn)已知A品牌共享單車計(jì)費(fèi)方式為:初始騎行單價(jià)為1元/半小時(shí),不足半小時(shí)按半小時(shí)計(jì)算.內(nèi)設(shè)邀請機(jī)制,每邀請一位好友注冊認(rèn)證并充值押金成功,雙方騎行單價(jià)均降價(jià)0.1元/半小時(shí),騎行單價(jià)最低可降至0.1元/半小時(shí)(比如,某用戶邀請了3位好友,則騎行單價(jià)為0.7元/半小時(shí)).B品牌共享單車計(jì)費(fèi)方式為:0.5元/半小時(shí),不足半小時(shí)按半小時(shí)計(jì)算.
(1)某用戶準(zhǔn)備選擇A品牌共享單車使用,設(shè)該用戶邀請好友x名(x為整數(shù),x≥0),該用戶的騎行單價(jià)為y元/半小時(shí).請寫出y關(guān)于x的函數(shù)解析式.
(2)若有A,B兩種品牌的共享單車各一輛供某用戶一人選擇使用,請你根據(jù)該用戶已邀請好友的人數(shù),給出經(jīng)濟(jì)實(shí)惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,邊長為4,點(diǎn)G在邊BC上運(yùn)動(dòng),DE⊥AG于E,BF∥DE交AG于點(diǎn)F,在運(yùn)動(dòng)過程中存在BF+EF的最小值,則這個(gè)最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形的外角和等于(
A.180°
B.360°
C.540°
D.720°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD交于點(diǎn)O,且DE∥AC,CE∥BD.

(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:探究函數(shù)y=|x|﹣2的圖象與性質(zhì).
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=|x|﹣2的圖象與性質(zhì)進(jìn)行了探究.
下面是小華的探究過程,請補(bǔ)充完整:
(1)在函數(shù)y=|x|﹣2中,自變量x可以是任意實(shí)數(shù);
如表是y與x的幾組對應(yīng)值.

x

﹣3

﹣2

﹣1

0

1

2

3

y

1

0

﹣1

﹣2

﹣1

0

m

①m=;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點(diǎn),則n=;
(2)①如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(3)該函數(shù)的最小值為;
(4)已知直線 與函數(shù)y=|x|﹣2的圖象交于C、D兩點(diǎn),當(dāng)y1≥y時(shí)x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形中的一條邊長為2cm,另一條邊長為5cm,則它的周長是_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))y軸交于點(diǎn)C,對稱軸與x軸交于點(diǎn)D,點(diǎn)E4,n)在拋物線上.

1)求直線AE的解析式;

2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)MCP上的一點(diǎn)點(diǎn)NCD上的一點(diǎn),KM+MN+NK的最小值;

3)點(diǎn)G是線段CE的中點(diǎn),將拋物線沿x軸正方向平移得到新拋物線y,y′經(jīng)過點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對稱軸上,是否存在一點(diǎn)Q,使得FGQ為等腰三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列已知條件,能夠畫出唯一△ABC的是( )

A. AB=5,BC=6,∠A=70° B. AB=5,BC=6,AC=13

C. ∠A=50°,∠B=80°,AB=8 D. ∠A=40°,∠B=50°,∠C=90°

查看答案和解析>>

同步練習(xí)冊答案