一件工藝品進價為100元,按標價135元售出,每天可售出100件.若每降價1元出售,則每天可多售出4件.要使每天獲得的利潤最大,每件需降價( 。┰
分析:設(shè)每件降價x元,利潤為y元,每件的利潤為(135-100-x)元,每天售出的件數(shù)為(100+4x)件,由條件求出y與x的關(guān)系式即可求出結(jié)論.
解答:解:設(shè)每件降價x元,利潤為y元,每件的利潤為(135-100-x)元,每天售出的件數(shù)為(100+4x)件,由題意,得
y=(135-100-x)(100+4x),
=-4x2+40x+3500,
=-4(x-5)2+3600,
∴a=-4<0,
∴x=5時,y最大=3600.
故選A.
點評:本題考查了銷售問題的數(shù)量關(guān)系的運用,二次函數(shù)的頂點式的運用,二次函數(shù)的最值得運用,解答時求出解析式是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、一件工藝品進價為100元,標價135元售出,每天可售出100件.根據(jù)銷售統(tǒng)計,一件工藝品每降價1元出售,則每天可多售出4件,要使每天獲得的利潤最大,每件需降價的錢數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源:濟寧 題型:單選題

一件工藝品進價為100元,標價135元售出,每天可售出100件.根據(jù)銷售統(tǒng)計,一件工藝品每降價1元出售,則每天可多售出4件,要使每天獲得的利潤最大,每件需降價的錢數(shù)為(  )
A.5元B.10元C.0元D.36元

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》好題集(07):2.6 何時獲得最大利潤(解析版) 題型:選擇題

一件工藝品進價為100元,標價135元售出,每天可售出100件.根據(jù)銷售統(tǒng)計,一件工藝品每降價1元出售,則每天可多售出4件,要使每天獲得的利潤最大,每件需降價的錢數(shù)為( )
A.5元
B.10元
C.0元
D.36元

查看答案和解析>>

科目:初中數(shù)學 來源:第26章《二次函數(shù)》中考題集(18):26.3 實際問題與二次函數(shù)(解析版) 題型:選擇題

一件工藝品進價為100元,標價135元售出,每天可售出100件.根據(jù)銷售統(tǒng)計,一件工藝品每降價1元出售,則每天可多售出4件,要使每天獲得的利潤最大,每件需降價的錢數(shù)為( )
A.5元
B.10元
C.0元
D.36元

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:選擇題

(2007•濟寧)一件工藝品進價為100元,標價135元售出,每天可售出100件.根據(jù)銷售統(tǒng)計,一件工藝品每降價1元出售,則每天可多售出4件,要使每天獲得的利潤最大,每件需降價的錢數(shù)為( )
A.5元
B.10元
C.0元
D.36元

查看答案和解析>>

同步練習冊答案