【題目】德州扒雞聞名全國,遠銷海外,被譽為“天下第一雞”.某種德州扒雞其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售量可增加20千克,若該專賣店銷售這種扒雞想要平均每天獲利2240元,請回答:

1)每千克這種扒雞應(yīng)降價多少元?

2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?

【答案】1)每千克這種扒雞應(yīng)降價6元或4元;(2)應(yīng)該9折出售

【解析】

1)設(shè)每千克山藥應(yīng)降價x元,利用銷售量×每件利潤=2240元列出方程求解即可;

2)為了讓利于顧客因此應(yīng)下降6元,求出此時的銷售單價即可確定幾折.

1)設(shè)每千克降價

解之,

答:每千克這種扒雞應(yīng)降價6元,或4

2)為了讓利顧客,所以應(yīng)降價6元,此時

所以應(yīng)該9折出售.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解決問題:

如圖,為了求平面直角坐標(biāo)系中任意兩點Ax1,y1)、Bx2,y2)之間的距離,可以AB為斜邊作RtABC,則點C的坐標(biāo)為Cx2y1),于是AC|x1x2|,BC|y1y2|,根據(jù)勾股定理可得AB,反之,可以將代數(shù)式的值看做平面內(nèi)點(x1,y1)到點(x2,y2)的距離.

例如∵= =,可將代數(shù)式看作平面內(nèi)點(x,y)到點(﹣13)的距離

根據(jù)以上材料解決下列問題

1)求平面內(nèi)點M2,﹣3)與點N(﹣13)之間的距離;

2)求代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教育行政部門規(guī)定初中生每天戶外活動的平均時間不少于1小時,為了解學(xué)生戶外活動的情況,隨機地對部分學(xué)生進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息解答下列問題:

1)在這次調(diào)查中共調(diào)查的學(xué)生人數(shù)為  ;活動時間為1小時所占的比例是 

2)補全條形統(tǒng)計圖;

3)若該市共有初中生約14000名,試估計該市符合教育行政部門規(guī)定的活動時間的學(xué)生數(shù);

4)如果從中任意抽取1名學(xué)生,活動時間為2小時的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(1)班所有學(xué)生參加2010年初中畢業(yè)生升學(xué)體育測試,根據(jù)測試評分標(biāo)準(zhǔn),將他們的成績進行統(tǒng)計后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結(jié)合圖中所給信息解答下列問題:

九年級(1)班參加體育測試的學(xué)生有_________人;

將條形統(tǒng)計圖補充完整;

在扇形統(tǒng)計圖中,等級B部分所占的百分比是___,等級C對應(yīng)的圓心角的度數(shù)為___°;

若該校九年級學(xué)生共有850人參加體育測試,估計達到A級和B級的學(xué)生共有___人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三邊、所在的直線相切,切點分別為、、,連接,若,則的度數(shù)是(

A.35°B.40°C.45°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參加學(xué)校運動會,八年級1班第一天購買了水果,面包,飲料,藥品等四種食品,四種食品購買金額的統(tǒng)計圖表如圖所示,若將水果、面包、藥品三種食品統(tǒng)稱為非飲料食品,并規(guī)定t

1t的值;

求扇形統(tǒng)計圖中鈍角∠AOB的度數(shù).

2)根據(jù)實際需要,該班第二天購買這四種食品時,增加購買飲料金額,同時減少購買面包金額,假設(shè)增加購買飲料金額的25%等于減少購買面包的金額,且購買面包的金額不少于100元,求t的取值范圍.

金額

食品

金額(單位:元)

水果

100

面包

125

飲料

225

藥品

50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的直徑,的弦.

1)如圖①,連接,若,求的大小;


2)如圖②;是半圓弧的中點,的延長線與過點的切線相交于點,若,求的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點,AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC的垂直平分線分別交BC、AD于點F E,垂足為O

(1)求證:四邊形AFCE為菱形;

(2)AB=4,BC=8,求菱形AFCE的面積.

查看答案和解析>>

同步練習(xí)冊答案