分析 (1)根據(jù)切線的性質(zhì)得出OA⊥AE,然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理得出∠E=∠ACE=∠OAC=30°,得出∠AOC=120°,從而求得$\widehat{ABC}$的度數(shù)為120°,$\widehat{ADC}$的度數(shù)為240°,即可求得∠B=120°;
(2)根據(jù)30°的直角三角形的性質(zhì)得出OE=2OA=2OD,得出OD=ED=1,得出EO=2,根據(jù)勾股定理即可求得AE.
解答 解:(1)連接OA,
∵AE是⊙O的切線,
∴OA⊥AE,
∵AE=AC,OA=OC,
∴∠E=∠ACE=∠OAC,
∵∠BAC+∠E+∠ACE=180°,
∴90°+3∠E=180°,
∴∠E=∠ACE=∠OAC=30°,
∴∠AOC=90°+30°=120°,
∴$\widehat{ABC}$的度數(shù)為120°,$\widehat{ADC}$的度數(shù)為240°,
∴∠B=120°;
(2)∵在直角三角形OAE中,∠E=30°,
∴OE=2OA,
∵OA=OD,
∴OA=OD=OE=1,
∴OE=2,
∴AE=$\sqrt{O{E}^{2}-O{A}^{2}}$=$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了切線的性質(zhì),等腰三角形的性質(zhì),30°的直角三角形的性質(zhì)以及勾股定理的應(yīng)用,作出輔助線構(gòu)建直角三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
x | 1.0 | 1.1 | 1.2 | 1.3 |
x2-8x+7.5 | 0.5 | -0.09 | -0.66 | -1.21 |
A. | 1.0<x<1.1 | B. | 1.1<x<1.2 | C. | 1.2<x<1.3 | D. | 1.0<x<1.3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (1,3) | C. | (-1,3) | D. | (-1,-3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5個(gè) | B. | 4個(gè) | C. | 3個(gè) | D. | 2個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ax2-a=a(x2-1) | B. | x2+x-2=x(x+1)-2 | C. | a2b+ab2=ab(a+b) | D. | x2+1=x(x+$\frac{1}{x}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com