如圖,AB是⊙O的直徑,AC切⊙O于點A,AD是⊙O的弦,OC⊥AD于F交⊙O于點E,連接DE、BE、BD、AE.
(1)求證:∠ACO=∠BED;
(2)連接CD,證明:直線CD是⊙O的切線;
(3)如果DE∥AB,AB=2cm,求四邊形AEDB的面積.
分析:(1)由AB是⊙O的直徑,AC切⊙O于點A,根據(jù)同角的余角相等,可得∠ACO=∠BAD,又由圓周角定理,可得∠BED=∠BAD,則可證得∠ACO=∠BED;
(2)首先連接OD,易證得△OAC≌△ODC,則可得∠ODC=∠OAC=90°,即可得直線CD是⊙O的切線;
(3)易證得
BD
=
DE
=
AE
,∠DBE=∠ABE=∠BAD,AE=BD=DE,即可求得∠BAD=30°,則可求得BD,AD的長,繼而可求得梯形AEDB的高,則可求得四邊形AEDB的面積.
解答:(1)證明:∵AB是⊙O的直徑,CA切⊙O于點A,
∴∠CAO=90°,
∴∠ACO+∠AOC=90°,
又∵OC⊥AD,
∴∠OFA=90°,
∴∠AOC+∠BAD=90°,
∴∠ACO=∠BAD,
又∵∠BED=∠BAD,
∴∠ACO=∠BED;

(2)連接CD、OD,
∵OC⊥AD,
AE
=
DE
,
∴∠DOC=∠AOC,
在△OAC和△ODC中,
OC=OC
∠AOC=∠DOC
OA=OD

∴△OAC≌△ODC(SAS),
∴∠ODC=∠OAC,
又∵CA切⊙O于點A,
∴∠OAC=90°,
∴∠ODC=90°,
∴CD是⊙O的切線;

(3)∵OC⊥AD,
AE
=
DE

又∵DE∥AB,
∴∠BAD=∠EDA,
BD
=
AE

BD
=
DE
=
AE
,
∴∠DBE=∠ABE=∠BAD,AE=BD=DE,
又∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠BAD=30°,
∴BD=
1
2
AB=1cm,DE=1cm,
在Rt△ABD中,由勾股定理得:AD=
3

過點D作DH⊥AB于H,
∵∠HAD=30°,
∴DH=
1
2
AD=
3
2
,
∴四邊形AEDB的面積為:
1
2
(DE+AB)•DH
1
2
(DE+AB)•DH
=
1
2
×(1+2)×
3
2
=
3
3
4
(cm2).
點評:此題考查了切線的性質(zhì)與判定、全等三角形的判定與性質(zhì)、圓周角定理、弧與弦的關(guān)系以及勾股定理等知識.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊答案