(2009•資陽)如圖,已知Rt△ABC的直角邊AC=24,斜邊AB=25,一個以點P為圓心、半徑為1的圓在△ABC內部沿順時針方向滾動,且運動過程中⊙P一直保持與△ABC的邊相切,當點P第一次回到它的初始位置時所經(jīng)過路徑的長度是( )

A.
B.25
C.
D.56
【答案】分析:Rt△ABC的直角邊AC=24,斜邊AB=25,則另一直角邊為7,圓心所經(jīng)過的路徑是一個與三角形相似的三角形,設三邊分別為7a,24a,25a,則從圖中我們可以看出三個梯形面積加上小三角形面積等于大三角形面積.三個梯形的高都是圓的半徑1,所以可列方程(24a+24)÷2+(7a+7)÷2+(25a+25)÷2+7a×24a÷2=24×7÷2,解之求得a的值,從而求得所構成的三角形的三邊,即可求出周長=
解答:解:設三邊分別為7a,24a,25a,
則:(24a+24)÷2+(7a+7)÷2+(25a+25)÷2+7a×24a÷2=24×7÷2,
解得:a=,
∴構成的三角形的三邊分別是,16,
∴周長=+16=
故選C.
點評:本題的關鍵是根據(jù)三個梯形面積加上小三角形面積等于大三角形面積,設出未知數(shù),列出方程求所構成的三角形的三邊長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年廣東省深圳市第二次十校聯(lián)考中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•資陽)如圖,已知拋物線y=x2-2x+1的頂點為P,A為拋物線與y軸的交點,過A與y軸垂直的直線與拋物線的另一交點為B,與拋物線對稱軸交于點O′,過點B和P的直線l交y軸于點C,連接O′C,將△ACO′沿O′C翻折后,點A落在點D的位置.
(1)求直線l的函數(shù)解析式;
(2)求點D的坐標;
(3)拋物線上是否存在點Q,使得S△DQC=S△DPB?若存在,求出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2009•資陽)如圖,已知拋物線y=x2-2x+1的頂點為P,A為拋物線與y軸的交點,過A與y軸垂直的直線與拋物線的另一交點為B,與拋物線對稱軸交于點O′,過點B和P的直線l交y軸于點C,連接O′C,將△ACO′沿O′C翻折后,點A落在點D的位置.
(1)求直線l的函數(shù)解析式;
(2)求點D的坐標;
(3)拋物線上是否存在點Q,使得S△DQC=S△DPB?若存在,求出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省資陽市中考數(shù)學試卷(解析版) 題型:解答題

(2009•資陽)如圖,已知拋物線y=x2-2x+1的頂點為P,A為拋物線與y軸的交點,過A與y軸垂直的直線與拋物線的另一交點為B,與拋物線對稱軸交于點O′,過點B和P的直線l交y軸于點C,連接O′C,將△ACO′沿O′C翻折后,點A落在點D的位置.
(1)求直線l的函數(shù)解析式;
(2)求點D的坐標;
(3)拋物線上是否存在點Q,使得S△DQC=S△DPB?若存在,求出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省資陽市中考數(shù)學試卷(解析版) 題型:填空題

(2009•資陽)如圖,已知直線AD,BC交于點E,且AE=BE,欲證明△AEC≌△BED,需增加的條件可以是    (只填一個即可).

查看答案和解析>>

同步練習冊答案