如圖,已知二次函數(shù)y=x2-4x+3的圖象交x軸于A,B兩點(點A在點B的左側(cè)),交y軸于點C.
(1)求直線BC的解析式;
(2)點D是在直線BC下方的拋物線上的一個動點,當△BCD的面積最大時,求D點坐標.
分析:(1)利用y=x2-4x+3的圖象交x軸于A、B兩點(點A在點B的左側(cè)),拋物線y=x2-4x+3交y軸于點C,即可得出A,B,C點的坐標,將B,C點的坐標分別代入y=kx+b(k≠0),即可得出解析式;
(2)設(shè)過D點的直線與直線BC平行,且拋物線只有一個交點時,△BCD的面積最大.
解答:解:(1)設(shè)直線BC的解析式為:y=kx+b(k≠0).
令x2-4x+3=0,
解得:x1=1,x2=3,
則A(1,0),B(3,0),C(0,3),
將B(3,0),C(0,3),代入y=kx+b(k≠0),得
0=3k+b 
b=3
,
解得:k=-1,b=3,
BC所在直線為:y=-x+3;

(2)設(shè)過D點的直線與直線BC平行,且拋物線只有一個交點時,△BCD的面積最大.
∵直線BC為y=-x+3,∴設(shè)過D點的直線為y=-x+b,
y=-x+b
y=x2-4x+3
,∴x2-3x+3-b=0,
∴△=9-4(3-b)=0,
解得b=
3
4

y=-x+
3
4
y=x2-4x+3
,
解得,
x=
3
2
y=-
3
4
,
則點D的坐標為:(
3
2
,-
3
4
).
點評:本題考查了二次函數(shù)綜合題型,主要考查了待定系數(shù)法求二次函數(shù)解析式,待定系數(shù)法求一次函數(shù)解析式,利用平行線確定點到直線的最大距離問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(
5
2
,
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標.
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案