如圖,已知與軸交于點(diǎn)的拋物線的頂點(diǎn)為,拋物線關(guān)于軸對(duì)稱,頂點(diǎn)為

(1)求拋物線的函數(shù)關(guān)系式;

(2)已知原點(diǎn),定點(diǎn),上的點(diǎn)上的點(diǎn)始終關(guān)于軸對(duì)稱,則當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?

(3)在上是否存在點(diǎn),使是以為斜邊且一個(gè)角為的直角三角形?若存,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:044

如圖,已知拋物線軸交于點(diǎn)A(-4,0)和B(1,0)兩點(diǎn),與y軸交于C點(diǎn).

(1)求此拋物線的解析式;

(2)設(shè)E是線段AB上的動(dòng)點(diǎn),作EF∥AC交BC于F,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時(shí),求E點(diǎn)的坐標(biāo);

(3)若P為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過P作y軸的平行線,交AC于Q,當(dāng)P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段PQ的值最大,并求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線軸交于點(diǎn)A(-4,0)和B(1,0)兩點(diǎn),與y軸交于C點(diǎn).

(1)求此拋物線的解析式;

(2)設(shè)E是線段AB上的動(dòng)點(diǎn),作EF∥AC交BC于F,連接CE,當(dāng)的面積是面積的2倍時(shí),求E點(diǎn)的坐標(biāo);

(3)若P為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過P作y軸的平行線,交AC于Q,當(dāng)P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段PQ的值最大,并求此時(shí)P點(diǎn)的坐標(biāo).

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖14,拋物線軸交于點(diǎn),點(diǎn),與直線相交于點(diǎn),點(diǎn),直線軸交于點(diǎn)

(1)寫出直線的解析式.

(2)求的面積.

(3)若點(diǎn)在線段上以每秒1個(gè)單位長(zhǎng)度的速度從運(yùn)動(dòng)(不與重合),同時(shí),點(diǎn)在射線上以每秒2個(gè)單位長(zhǎng)度的速度從運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒,請(qǐng)寫出的面積的函數(shù)關(guān)系式,并求出點(diǎn)運(yùn)動(dòng)多少時(shí)間時(shí),的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖14,⊙A與軸交于C、D兩點(diǎn),圓心A的坐標(biāo)為(1,0),⊙A的半徑為,過點(diǎn)C作⊙A的切線交軸于點(diǎn)B(-4,0).
(1)求切線BC的解析式;
(2)若點(diǎn)P是第一象限內(nèi)⊙A上的一點(diǎn),過點(diǎn)P作⊙A的切線與直線BC相交于點(diǎn)G,且∠CGP=120°,求點(diǎn)G的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案