【題目】甲、乙二人同時(shí)從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度VlV2(Vl<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;乙用一半的時(shí)間使用速度Vl、另一半的時(shí)間使用速度V2;關(guān)于甲乙二人從A地到達(dá)B地的路程與時(shí)間的函數(shù)圖象及關(guān)系,有圖中4個(gè)不同的圖示分析.其中橫軸t表示時(shí)間,縱軸s表示路程,其中正確的圖示分析為( 。

A. 圖(1) B. 圖(1)或圖(2) C. 圖(3) D. 圖(4)

【答案】B

【解析】

由題意得:甲在一半路程處將進(jìn)行速度的轉(zhuǎn)換,4個(gè)選項(xiàng)均符合;

乙在一半時(shí)間處將進(jìn)行速度的轉(zhuǎn)換,函數(shù)圖象將在t1處發(fā)生彎折,只有(1)(2)(4)符合,再利用速度不同,所以行駛路程就不同,兩人不可能同時(shí)到達(dá)目的地,故(4)錯(cuò)誤,故只有(1)(2)正確.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一個(gè)3×3的正方形網(wǎng)格,其右下角格點(diǎn)(小正方形的頂點(diǎn))A的坐標(biāo)為(﹣1,1),左上角格點(diǎn)B的坐標(biāo)為(﹣4,4),若分布在過定點(diǎn)(﹣1,0)的直線y=﹣kx+1)兩側(cè)的格點(diǎn)數(shù)相同,則k的取值可以是( 。

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計(jì)),這些薄板的形狀均為正方形,邊長(單位:cm)在550之間,每張薄板的成本價(jià)(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與薄板的大小無關(guān),是固定不變的,浮動(dòng)價(jià)與薄板的邊長成正比例,在營銷過程中得到了表格中的數(shù)據(jù).

薄板的邊長(cm)

20

30

出廠價(jià)(元/張)

50

70

(1)求一張薄板的出廠價(jià)與邊長之間滿足的函數(shù)關(guān)系式;

(2)40cm的薄板,獲得的利潤是26元(利潤=出廠價(jià)﹣成本價(jià)).

①求一張薄板的利潤與邊長之間滿足的函數(shù)關(guān)系式;

②當(dāng)邊長為多少時(shí),出廠一張薄板獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ACBC5,∠ACB80°,OABC中一點(diǎn),∠OAB10°,∠OBA30°,則線段AO的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=8,點(diǎn)P為線段AB上一動(dòng)點(diǎn),過點(diǎn)PPEAB交直線ADE,沿PE將∠A折疊,點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)F,連接EF、DF、GF,當(dāng)△CDF為直角三角形時(shí),AP=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,上一點(diǎn),且、分別平分、.

(1)求證:;

(2),,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的等邊三角形的頂點(diǎn)分別在邊上當(dāng)在邊上運(yùn)動(dòng)時(shí),隨之在邊上運(yùn)動(dòng),等邊三角形的形狀保持不變,運(yùn)動(dòng)過程中,點(diǎn)到點(diǎn)的最大距離為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P,Q分別是等邊△ABCAB,BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ,CP交于點(diǎn)M.

1)求證:△ABQCAP;

2)如圖1,當(dāng)點(diǎn)P,Q分別在AB,BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說明理由;若不變,求出它的度數(shù).

3)如圖2,若點(diǎn)P,Q在分別運(yùn)動(dòng)到點(diǎn)B和點(diǎn)C后,繼續(xù)在射線AB,BC上運(yùn)動(dòng),直線AQ,CP交點(diǎn)為M,則∠QMC= 度.(直接填寫度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】泰勒斯是古希臘哲學(xué)家,相傳他利用三角形全等的方法求出岸上一點(diǎn)到海中一艘船的距離.如圖,B是觀察點(diǎn),船AB的正前方,過BAB的垂線,在垂線上截取任意長BD,CBD的中點(diǎn),觀察者從點(diǎn)D沿垂直于BDDE方向走,直到點(diǎn)E、船A和點(diǎn)C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

同步練習(xí)冊(cè)答案