精英家教網 > 初中數學 > 題目詳情

探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數),連接任意兩個釘子所得到的不同長度值的線段種數:

當n=2時,釘子板上所連不同線段的長度值只有1與,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數,則S=2;

當n=3時,釘子板上所連不同線段的長度值只有1,,2,,2五種,比n=2時增加了3種,即S=2+3=5。

(1)    觀察圖形,填寫下表:

釘子數(n×n)

S值

2×2

2

3×3

2+3

4×4

2+3+(     )

5×5

(                 )

(2)    寫出(n-1)×(n-1)和n×n的兩個釘子板上,不同長度值的線段種數之間的關系;(用式子或語言表述均可)

(3)對n×n的釘子板,寫出用n表示S的代數式。

解:(1)4,2+3+4+5(或14)

(2)(i)n×n的釘子板比(n-1)×(n-1)的釘子板中不同長度的線段種數增加了n種;

(ii)分別用a,b表示n×n與(n-1)×(n-1)的釘子板中不同長度的線段種數,

則a=b+n。

(3)S=2+3+4+…+n

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數),連接任意兩個釘子所得到的不同長度值的線段種數:
當n=2時,釘子板上所連不同線段的長度值只有1與
2
,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數,則S=2;
當n=3時,釘子板上所連不同線段的長度值只有1,
2
,2,
5
,2
2
五種,比n=2時增加了3種,即S=2+3=5.
(1)觀察圖形,填寫下表:
(2)寫出(n-1)×(n-1)和n×n的兩個釘子板上,不同長度值的線段種數之間的關系;(用式子或語言表述均可)
(3)對n×n的釘子板,寫出用n表示S的代數式.
精英家教網
釘子數(n) S值
 2×2  2
 3×3  2+3
 4×4  2+3+( 。
 5×5  ( 。

查看答案和解析>>

科目:初中數學 來源:2013屆北京101中學八年級下學期期中考試數學試卷(解析版) 題型:填空題

如圖,探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數),連接任意兩個釘子所得到的不同長度值的線段種數:當n=2時,釘子板上所連不同線段的長度值只有1與,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數,則S=2;那么當n=5時, S=_________;對n×n的釘子板,寫出用n表示S的代數式S=_____________________。

n=2        n=3             n=4                 n=5

第16題圖

 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數),連接任意兩個釘子所得到的不同長度值的線段種數:
當n=2時,釘子板上所連不同線段的長度值只有1與數學公式,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數,則S=2;
當n=3時,釘子板上所連不同線段的長度值只有1,數學公式,2,數學公式,2數學公式五種,比n=2時增加了3種,即S=2+3=5.
(1)觀察圖形,填寫下表:
(2)寫出(n-1)×(n-1)和n×n的兩個釘子板上,不同長度值的線段種數之間的關系;(用式子或語言表述均可)
(3)對n×n的釘子板,寫出用n表示S的代數式.

釘子數(n)S值
2×2 2
3×3 2+3
4×4 2+3+
5×5

查看答案和解析>>

科目:初中數學 來源:期末題 題型:解答題

探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數),連接任意兩個釘子所得到的不同長度值的線段種數:
當n=2時,釘子板上所連不同線段的長度值只有1與,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數,則S=2;當n=3時,釘子板上所連不同線段的長度值只有1,,2,,2五種,比n=2時增加了3種,即S=2+3=5.
(1)觀察圖形,填寫下表:
(2)寫出(n-1)×(n-1)和n×n的兩個釘子板上,不同長度值的線段種數之間的關系;(用式子或語言表述均可)
(3)對n×n的釘子板,寫出用n表示S的代數式

查看答案和解析>>

同步練習冊答案