分析 先利用勾股定理計(jì)算出AB,再證明Rt△ABO∽R(shí)t△BPC,然后利用相似比求PB.
解答 解:∵A(0,3),B(4,0),
∴OA=3,OB=4,
∴AB=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵PB⊥AB,
∴∠ABO+∠PBC=90°,
∵∠ABO+∠BAO=90°,
∴∠BAO=∠PBC,
∴Rt△ABO∽R(shí)t△BPC,
∴$\frac{OA}{BC}$=$\frac{OB}{PC}$,即$\frac{3}{a-4}$=$\frac{5}{PB}$,
∴PB=$\frac{5a-20}{3}$.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過(guò)作平行線構(gòu)造相似三角形.也考查了坐標(biāo)與圖形性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∠1與∠C是同位角 | B. | ∠1與∠3是對(duì)頂角 | ||
C. | ∠3與∠C是內(nèi)錯(cuò)角 | D. | ∠B與∠3是同旁內(nèi)角 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com