【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A、C分別在y軸和x軸上,AB∥x軸,cosB=.點(diǎn)P從B點(diǎn)出發(fā),以1cm/s的速度沿邊BA勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā),沿線段AO-OC-CB勻速運(yùn)動(dòng).點(diǎn)P與點(diǎn)Q同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s),△BPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖(2)中的曲線段OE、線段EF與曲線段FG.
(1)點(diǎn)Q的運(yùn)動(dòng)速度為 cm/s,點(diǎn)B的坐標(biāo)為 ;
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時(shí),△BPQ的面積是四邊形OABC的面積的?
【答案】(1)4,(18,8);
(2)曲線FG段的函數(shù)解析式為:S=t2+12t;
(3)t=3或t=,△BPQ的面積是四邊形OABC的面積的.
【解析】試題分析:(1)結(jié)合函數(shù)圖象得出當(dāng)2秒時(shí),BP=2,此時(shí)△BPQ的面積為8cm2,進(jìn)而求出AO為8cm,即可得出Q點(diǎn)的速度,進(jìn)而求出AB的長(zhǎng)即可;(2)首先得出PB=t,BQ=30-4t,則QM=(30-4t)=24-t,利用S△PBQ=t(24-t)求出即可;(3)首先得出△BPQ的面積,進(jìn)而得出F點(diǎn)坐標(biāo),進(jìn)而得出直線EF解析式為:S=4t,當(dāng)S=12時(shí),求出t的值,再將S=12代入S=-t2+12t求出t的值,即可得出答案.
試題解析:(1)由題意可得出:當(dāng)2秒時(shí),△BPQ的面積的函數(shù)關(guān)系式改變,則Q在AO上運(yùn)動(dòng)2秒,
當(dāng)2秒時(shí),BP=2,此時(shí)△BPQ的面積為8cm2,
∴AO為8cm,
∴點(diǎn)Q的運(yùn)動(dòng)速度為:8÷2=4(cm/s),
當(dāng)運(yùn)動(dòng)到5秒時(shí),函數(shù)關(guān)系式改變,則CO=12cm,
∵cosB=,
∴可求出AB=6+12=18(cm),
∴B(18,8);
故答案為:4,(18,8);
(2)如圖(1):
PB=t,BQ=304t,
過(guò)點(diǎn)Q作QM⊥AB于點(diǎn)M,
則QM= (304t)=24t,
∴S△PBQ=t(24t)= t2+12t(5t7.5),
即曲線FG段的函數(shù)解析式為:S= t2+12t;
(3)∵S梯形OABC= (12+18)×8=120,
∴
當(dāng)t>2時(shí),F(5,20),
∴直線EF解析式為:S=4t,當(dāng)S=12時(shí),4t=12,解得:t=3,
將S=12代入S=t2+12t,
解得:t=,
∵5t7.5,故t=,
綜上所述:t=3或t=,△BPQ的面積是四邊形OABC的面積的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC的兩腰AB、BC上分別取點(diǎn)D和E,使DB=DE,此時(shí)恰有∠ADE= ∠ACB,則∠B的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道對(duì)于x軸上的任意兩點(diǎn)A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點(diǎn)間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O為坐標(biāo)原點(diǎn),若點(diǎn)P坐標(biāo)為(1,3),則d(O,P)= ;
(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=2,請(qǐng)寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;
(3)試求點(diǎn)M(2,3)到直線y=x+2的最小直角距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(-8,0),直線BC經(jīng)過(guò)點(diǎn)B(-8,6),C(0,6),將四邊形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)α度(0<α ≤180°)得到四邊形OA′B′C′,此時(shí)直線OA′、直線B′C′分別與直線BC相交于P、Q.在四邊形OABC旋轉(zhuǎn)過(guò)程中,若BP=BQ,則點(diǎn)P的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A. x2﹣2xy2=﹣x2yB. 2a﹣3b=﹣ab
C. a2+a3=a5D. ﹣3ab﹣3ab=﹣6ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn)、,點(diǎn)為軸負(fù)半軸上一點(diǎn), 于點(diǎn)交軸于點(diǎn).已知拋物線經(jīng)過(guò)點(diǎn)、、.
()求拋物線的函數(shù)式.
()連接,點(diǎn)在線段上方的拋物線上,連接、,若和面積滿足,求點(diǎn)的坐標(biāo).
()如圖, 為中點(diǎn),設(shè)為線段上一點(diǎn)(不含端點(diǎn)),連接.一動(dòng)點(diǎn)從出發(fā),沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到,再沿著線段以每秒個(gè)單位的速度運(yùn)動(dòng)到后停止.若點(diǎn)在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少,請(qǐng)直接寫出最少時(shí)間和此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過(guò)10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過(guò)10噸時(shí),超過(guò)的部分每噸按調(diào)節(jié)價(jià)收費(fèi).例如,第一個(gè)月用水16噸,需交水費(fèi)17.8元,第二個(gè)月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià);
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,寫出y與x之間的函數(shù)關(guān)系式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)三角形的兩邊長(zhǎng)分別為3和4,則第三邊的長(zhǎng)不可能的是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com