分析 (1)首先根據(jù)四邊形ABCD是正方形,可得AD=CD,∠ADM=∠CDM=45°,然后根據(jù)全等三角形判定的方法,判斷出△ADM≌△CDM,即可判斷出AM=CM;
(2)連接OD,根據(jù)切線的性質(zhì)可得∠ODC=90°,可得cosC的值.
解答 (1)證明:∵四邊形是ABCD正方形,
∴AD=DC,∠ADB=∠CDB=45°,
在△ADM和△CDM中,$\left\{\begin{array}{l}AD=DC\\∠ADM=∠CDM\\ DM=DM\end{array}\right.$
∴△ADM≌△CDM(SAS)
∴AM=CM;
(2)解:連接OD,
∵CD為圓O的切線,
∴∠ODC=90°,
∵AB=4,
∴OA=OD=2,
∵AC=7
∴OC=5,
在Rt△COD中,根據(jù)勾股定理得 CD=$\sqrt{21}$,
∴cosC=$\frac{{\sqrt{21}}}{5}$.
點(diǎn)評(píng) (1)此題考查了正方形的性質(zhì)和應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:①正方形的四條邊都相等,四個(gè)角都是直角;②正方形的兩條對(duì)角線相等,互相垂直平分,并且每條對(duì)角線平分一組對(duì)角;③正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).④兩條對(duì)角線將正方形分成四個(gè)全等的等腰直角三角形,同時(shí),正方形又是軸對(duì)稱(chēng)圖形,有四條對(duì)稱(chēng)軸.
(2)本題考查了圓的切線性質(zhì),及解直角三角形的知識(shí).運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$+1 | B. | 2$\sqrt{5}$-2 | C. | 2$\sqrt{3}$-2 | D. | $\sqrt{3}$+1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com