【題目】某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元),設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤為y元.

1)求yx的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大的月利潤是多少元?

【答案】1yx的函數(shù)關(guān)系式為x的取值范圍為,且x為正整數(shù);(2)每件商品的售價(jià)定為55元或56元時(shí),每個(gè)月可獲得最大利潤,最大的月利潤是2400.

【解析】

1)先求出每件商品的售價(jià)上漲x元后的月銷量,再根據(jù)“月利潤=每件利潤月銷量”列出等式即可;根據(jù)x為正整數(shù),和每件售價(jià)不能高于65元寫成x的取值范圍;

2)根據(jù)題(1)的結(jié)論,利用二次函數(shù)圖象的性質(zhì)求解即可.

1)設(shè)每件商品的售價(jià)上漲x元,則商品的售價(jià)為元,月銷量為

由題意得:

整理得:

由每件售價(jià)不能高于65元得:,即

又因x為正整數(shù)

x的取值范圍為:,且x為正整數(shù)

綜上,yx的函數(shù)關(guān)系式為;x的取值范圍為,且x為正整數(shù);

2的對稱軸為:

則當(dāng)時(shí),yx的增大而增大;當(dāng)時(shí),yx的增大而減小

x為正整數(shù),則當(dāng)時(shí),,y取得最大值;當(dāng)時(shí),,y取得最大值,比較這兩個(gè)最大值即可得出最大利潤

代入得:,此時(shí)售價(jià)為

代入得:,此時(shí)售價(jià)為

答:每件商品的售價(jià)定為55元或56元時(shí),每個(gè)月可獲得最大利潤,最大的月利潤是2400.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn),且當(dāng)時(shí)所對應(yīng)的函數(shù)值相等.一次函數(shù)與二次函數(shù)的圖象分別交于 兩點(diǎn),點(diǎn)在第一象限.

)求二次函數(shù)的表達(dá)式.

)連接,求的長.

)連接, 是線段得中點(diǎn),將點(diǎn)繞點(diǎn)旋轉(zhuǎn)得到點(diǎn),連接, ,判斷四邊形的性狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)為(﹣1,0),且ABAC,∠BAC90°,若B、C均在反比例函數(shù)y的圖象上,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,對稱軸與x軸交于點(diǎn)D,若點(diǎn)Py軸上的一個(gè)動點(diǎn),連接PD,則的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,ABBC,AB=3.點(diǎn)E為射線 BC上一個(gè)動點(diǎn),連接AE,將ABE沿AE折疊,點(diǎn)B落在點(diǎn)B′處,過點(diǎn)B′AD的垂線,分別交AD,BC于點(diǎn)M,N.當(dāng)點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),BE的長為__________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)的中點(diǎn),,繞點(diǎn)旋轉(zhuǎn),、分別與邊、交于、兩點(diǎn).下列結(jié)論:;;;可能互相平分.

其中,正確的結(jié)論是___________________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知都為等邊三角形,則的數(shù)量關(guān)系正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長方形ABCD中,∠DAB=∠B=∠DCB=∠D90°,ADBC6,ABCD10.點(diǎn)E為射線DC上的一個(gè)動點(diǎn),把△ADE沿直線AE翻折得△ADE

1)當(dāng)D′點(diǎn)落在AB邊上時(shí),∠DAE   °;

2)如圖2,當(dāng)E點(diǎn)與C點(diǎn)重合時(shí),DCAB交點(diǎn)F,

①求證:AFFC;②求AF長.

3)連接DB,當(dāng)∠ADB90°時(shí),求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB2BC2.點(diǎn)P,Q分別是BC,AD邊上的一個(gè)動點(diǎn),連結(jié)BQ,以P為圓心,PB長為半徑的⊙P交線段BQ于點(diǎn)E,連結(jié)PD

1)若DQ且四邊形BPDQ是平行四邊形時(shí),求出⊙P的弦BE的長;

2)在點(diǎn)P,Q運(yùn)動的過程中,當(dāng)四邊形BPDQ是菱形時(shí),求出⊙P的弦BE的長,并計(jì)算此時(shí)菱形與圓重疊部分的面積.

查看答案和解析>>

同步練習(xí)冊答案