已知,如圖,在四邊形ABCD中,∠B+∠D=180°,AB=AD,E,F(xiàn)分別是線段BC,CD上的點(diǎn),且BE+FD=EF.求證:∠EAF=∠BAD.

【答案】分析:把△ADF繞點(diǎn)A順時針旋轉(zhuǎn)∠DAB的度數(shù)得到△ABG,AD旋轉(zhuǎn)到AB,AF旋轉(zhuǎn)到AG,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AG=AF,BG=DF,∠ABG=∠D,∠BAG=∠DAF,由∠B+∠D=180°得∠B+∠ABG=180°,即點(diǎn)G、B、C共線,而BE+FD=EF,則有GE=EF,根據(jù)三角形全等的判定方法易得△AEG≌△AEF,則∠EAG=∠EAF,而∠BAG=∠DAF,于是有∠EAB+∠DAF=∠EAF,即可得到結(jié)論.
解答:證明:把△ADF繞點(diǎn)A順時針旋轉(zhuǎn)∠DAB的度數(shù)得到△ABG,AD旋轉(zhuǎn)到AB,AF旋轉(zhuǎn)到AG,如圖,
∴AG=AF,BG=DF,∠ABG=∠D,∠BAG=∠DAF,
∵∠B+∠D=180°,
∴∠B+∠ABG=180°,
∴點(diǎn)G、B、C共線,
∵BE+FD=EF,
∴BE+BG=GE=EF,
在△AEG和△AEF中,
,
∴△AEG≌△AEF,
∴∠EAG=∠EAF,
而∠BAG=∠DAF,
∴∠EAB+∠DAF=∠EAF,
∴∠EAF=∠BAD.
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,即對應(yīng)角線段,對應(yīng)線段線段;對應(yīng)點(diǎn)的連線段所夾的角等于旋轉(zhuǎn)角;對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.也考查了三角形全等的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

39、已知:如圖,在四邊形ABCD中,AB=DC,AD=BC,點(diǎn)E在BC上,點(diǎn)F在AD上,AF=CE,EF與對角線BD相交于點(diǎn)O.求證:O是BD的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請設(shè)計兩種不同的分法,將四邊形ABCD分割成四個三角形,使得分割成的每個三角形都是等腰三角形.畫法要求如下:
(1)兩種分法只要有一條分割線段位置不同,就認(rèn)為是兩種不同的分法;
(2)畫圖工具不限,但要求畫出分割線段;
(3)標(biāo)出能夠說明不同分法所得三角形的內(nèi)角度數(shù),例如樣圖;
(4)不要求寫出畫法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,AD∥BC,AC⊥BC,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),AF=CE.求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求證:AB=BC;
(2)當(dāng)BE⊥AD于E時,試證明:BE=AE+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點(diǎn),AD、BC的延長線交MN于E、F.
求證:∠DEN=∠F.

查看答案和解析>>

同步練習(xí)冊答案