分析 延長(zhǎng)AF到G使FG=AF,由F是BE的中點(diǎn),得到BF=EF,推出△ABF≌△EFG,根據(jù)全等三角形的性質(zhì)得到AB=EG,∠B=∠FEG,根據(jù)四邊形和三角形的內(nèi)角和得到∠C=∠B+∠FED=∠FEG+∠FED=∠GED,證得△ACD≌△GED,根據(jù)全等三角形的性質(zhì)得到AD=GD,∠ADC=∠GDE根據(jù)等腰三角形的性質(zhì)得到AF⊥DF,根據(jù)等腰直角三形即可得到結(jié)論.
解答 解:延長(zhǎng)AF到G使FG=AF,
∵F是BE的中點(diǎn),
∴BF=EF,
在△AFB與△EFG中,$\left\{\begin{array}{l}{AF=FG}\\{∠AFB=∠EFG}\\{BF=EF}\end{array}\right.$,
∴△ABF≌△EFG,
∴AB=EG,∠B=∠FEG,
∵∠BAC=∠CDE=90°,
∴∠B+∠DEF+∠CAD+∠CDA=180°,
∵∠CAD+∠C+∠CDA=180°,
∴∠C=∠B+∠FED=∠FEG+∠FED=∠GED,
在△ACD與△GED中,$\left\{\begin{array}{l}{AC=GE}\\{∠C=∠GED}\\{CD=ED}\end{array}\right.$,
∴△ACD≌△GED,
∴AD=GD,∠ADC=∠GDE,
∵AF=GF,
∴AF⊥DF,
∵∠GDE+GDC=∠CDE=90°,
∴∠ADC+∠GDC=90°,
即∠ADG=90°,
∴AF=DF.
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),四邊形的內(nèi)角和,三角形的內(nèi)角和,正確的作出輔助線是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{5}$ | B. | $\frac{{\sqrt{15}}}{3}$ | C. | $\frac{{\sqrt{15}}}{5}$或$\frac{{\sqrt{15}}}{3}$ | D. | 以上都不對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (a+$\frac{1}{2}$b)-(-$\frac{1}{3}$c+$\frac{2}{7}$)=a+$\frac{1}{2}$b+$\frac{1}{3}c$-$\frac{2}{7}$ | B. | m+(-n+a-b)=m-n+a-b | ||
C. | x-(3y-$\frac{1}{2}$)=x-3y+$\frac{1}{2}$ | D. | -$\frac{1}{2}$(4x-6y+3)=-2x+3y+3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com