如圖11,已知:△ABC中,ADBC邊上的中線.試說明不等式AD+BDAB+AC)成立的理由.

 


ABD中,AD+BDAB,同理△ADC中,AD+DCAC,所以AD+BD+AD+DCAB+AC,又BDDC,即2(AD+BD)>AB+AC,所以AD+BDAB+AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本小題10分)如圖11,已知二次函數(shù)y= -x2 +mx +4m的圖象與x軸交于

A(x1,0),B(x2,0)兩點(B點在A點的右邊),與y軸的正半軸交于點C,且(x1+x2) - x1x2=10.

(1)求此二次函數(shù)的解析式.

(2)寫出B,C兩點的坐標(biāo)及拋物線頂點M的坐標(biāo);

(3)連結(jié)BM,動點P在線段BM上運動(不含端點B,M),過點P作x軸的垂線,垂足為H,設(shè)OH的長度為t,四邊形PCOH的面積為S.請?zhí)骄浚核倪呅蜳COH的面積S有無最大值?如果有,請求出這個最大值;如果沒有,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖11,已知○為坐標(biāo)原點,∠AOB=30°,∠ABO=90°,且點A的坐標(biāo)為(2,0).

【小題1】求點B的坐標(biāo)
【小題2】若二次函數(shù)y=ax+bx+c的圖象經(jīng)過A、B、O三點,求此二次函數(shù)的解析式;
【小題3】在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分9分)
如圖11,已知拋物線與x 軸交于兩點A、B,其頂點為C.

(1)對于任意實數(shù)m,點M(m,-2)是否在該拋物線上?請說明理由;
(2)求證:△ABC是等腰直角三角形;
(3)已知點D在x軸上,那么在拋物線上是否存在點P,使得以B、C、D、P為頂點的四邊形是平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇鹽城亭湖區(qū)九年級下學(xué)期第一次調(diào)研考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖11,已知○為坐標(biāo)原點,∠AOB=30°,∠ABO=90°,且點A的坐標(biāo)為(2,0).

【小題1】求點B的坐標(biāo)
【小題2】若二次函數(shù)y=ax+bx+c的圖象經(jīng)過A、B、O三點,求此二次函數(shù)的解析式;
【小題3】在(2)中的二次函數(shù)圖象的OB段(不包括點O、B)上,是否存在一點C,使得四邊形ABCO的面積最大?若存在,求出這個最大值及此時點C的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011—2012學(xué)年廣東湛江八年級上學(xué)期第三次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖11,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于D。

【小題1】若∠BAC=30°,求證:AD=BD;
【小題2】若AP平分∠BAC且交BD于P,求∠BPA的度數(shù)

查看答案和解析>>

同步練習(xí)冊答案