如圖,已知AD為∠BAC的平分線,且AD=2,AC=數(shù)學公式,∠C=90°.求∠ADC及AB的值.

解:在Rt△ACD中,
sin∠ADC==,
∴∠ADC=60°,
∴∠CAD=30°,
又AD為∠BAC的角平分線,所以得∠BAC=60°,
∴∠B=30°;
∴AB=2AC=2
分析:由已知AD=2,AC=,在Rt△ACD中,可求出∠ADC=60°,即得∠CAD=30°,又AD為∠BAC的角平分線,所以得∠BAC=60°,從而求出∠B=30°,根據(jù)三角函數(shù)值即可求出AB的值.
點評:此題考查的知識點是解直角三角形,關鍵是運用直角三角形三角函數(shù)及角平分線性質求出∠B,再由三角函數(shù)求出AB的值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AD為等腰三角形ABC底邊上的高,且tan∠B=
4
3
.AC上有一點E,滿足AE:EC=2:3.那么,tan∠ADE是( 。
A、
3
5
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AD為△ABC的角平分線,DE∥AB交AC于E,如果
AE
EC
=
2
3
,那么
AB
AC
=( 。
A、
1
3
B、
2
3
C、
2
5
D、
3
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AD為∠BAC的平分線,且AD=2,AC=
3
,∠C=90°,求BC的長及△ABC外接圓直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,已知AD為⊙O的切線,⊙O的直徑是AB=2,弦AC=1,則∠CAD=
30
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AD為△ABC的角平分線,DE∥AB,如果
AE
EC
=
2
3
,那么
DE
AB
=
 

查看答案和解析>>

同步練習冊答案