(2005•烏魯木齊)在平面直角坐標(biāo)系中點P(2,5)關(guān)于原點的對稱點P′的坐標(biāo)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】分析:本題比較容易,考查平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),即關(guān)于原點的對稱;記憶方法是結(jié)合平面直角坐標(biāo)系的圖形記憶.
解答:解:∵P(2,5)關(guān)于原點的對稱點P’的坐標(biāo)是(-2,-5),
所以在第三象限.
故選C.
點評:關(guān)于原點對稱的點坐標(biāo)的關(guān)系,是需要識記的基本問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•烏魯木齊)四邊形OABC是等腰梯形,OA∥BC.在建立如圖的平面直角坐標(biāo)系中,A(4,0),B(3,2),點M從O點以每秒2個單位的速度向終點A運動;同時點N從B點出發(fā)以每秒1個單位的速度向終點C運動,過點N作NP垂直于x軸于P點連接AC交NP于Q,連接MQ.
(1)寫出C點的坐標(biāo);
(2)若動點N運動t秒,求Q點的坐標(biāo);(用含t的式子表示)
(3)其△AMQ的面積S與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(4)當(dāng)t取何值時,△AMQ的面積最大;
(5)當(dāng)t為何值時,△AMQ為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•烏魯木齊)已知二次函數(shù)y=x2+bx+c的圖象過點M(0,-3),并與x軸交于點A(x1,0)、B(x2,0)兩點,且x12+x22=10.試求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2005•烏魯木齊)已知函數(shù)的圖象經(jīng)過點A(6,-1),則下列點中不在該函數(shù)圖象上的點是( )
A.(-2,3)
B.(-1,-6)
C.(1,-6)
D.(2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年新疆烏魯木齊市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•烏魯木齊)四邊形OABC是等腰梯形,OA∥BC.在建立如圖的平面直角坐標(biāo)系中,A(4,0),B(3,2),點M從O點以每秒2個單位的速度向終點A運動;同時點N從B點出發(fā)以每秒1個單位的速度向終點C運動,過點N作NP垂直于x軸于P點連接AC交NP于Q,連接MQ.
(1)寫出C點的坐標(biāo);
(2)若動點N運動t秒,求Q點的坐標(biāo);(用含t的式子表示)
(3)其△AMQ的面積S與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(4)當(dāng)t取何值時,△AMQ的面積最大;
(5)當(dāng)t為何值時,△AMQ為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年新疆烏魯木齊市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•烏魯木齊)已知二次函數(shù)y=x2+bx+c的圖象過點M(0,-3),并與x軸交于點A(x1,0)、B(x2,0)兩點,且x12+x22=10.試求這個二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案