14.計(jì)算:
(1)$\frac{\sqrt{20}-\sqrt{5}}{\sqrt{5}}$
(2)($\sqrt{6}$-$\sqrt{\frac{1}{6}}$)×$\sqrt{3}$-$\frac{3}{2}$$\sqrt{2}$.

分析 (1)首先化簡二次根式,進(jìn)而得出答案;
(2)利用二次根式乘法運(yùn)算法則化簡求出答案.

解答 解:(1)$\frac{\sqrt{20}-\sqrt{5}}{\sqrt{5}}$
=$\frac{2\sqrt{5}-\sqrt{5}}{\sqrt{5}}$
=$\frac{\sqrt{5}}{\sqrt{5}}$
=1;

(2)($\sqrt{6}$-$\sqrt{\frac{1}{6}}$)×$\sqrt{3}$-$\frac{3}{2}$$\sqrt{2}$
=$\sqrt{6×3}$-$\sqrt{\frac{1}{2}}$-$\frac{3}{2}$$\sqrt{2}$
=3$\sqrt{2}$-2$\sqrt{2}$
=$\sqrt{2}$.

點(diǎn)評 此題主要考查了二次根式的混合運(yùn)算,正確化簡二次根式是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.(1)計(jì)算:$\sqrt{\frac{1}{7}}+\sqrt{28}-\sqrt{700}$
(2)解下列方程組:$\left\{\begin{array}{l}{3x+4y=10}\\{4x+y-9=0}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.圓內(nèi)接四邊形ABCD的四個(gè)內(nèi)角的度數(shù)之比∠A:∠B:∠C:∠D可以是( 。
A.3:2:4:1B.1:3:4:2C.3:3:1:4D.4:1:2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.計(jì)算
(1)-$\sqrt{36}$+$\sqrt{2\frac{1}{4}}$+$\root{3}{27}$
(2)$\root{3}{8}$-(π-3.14)0+|1-$\sqrt{2}$|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.下列各數(shù)是無理數(shù)的是( 。
A.$\sqrt{1}$B.$\frac{1}{3}$C.3.14159D.$\sqrt{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.化簡:
(1)$\frac{x}{x-y}-\frac{y}{x-y}$
(2)$\frac{{a}^{2}-ab}{{a}^{2}}÷(\frac{a}-\frac{a})$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算(結(jié)果保留小數(shù)點(diǎn)后四位)
(1)sin23°5′+cos66°45′
(2)sin27.8°-tan15°8′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.已知(a2+b2)(a2+b2+1)=a2+b2+1,求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.?ABCD的周長為36cm,O為AC和BD的交點(diǎn),△AOB的周長比△BOC的周長小8cm,求?ABCD的邊AB,AD的長.

查看答案和解析>>

同步練習(xí)冊答案