(2004•重慶)如圖所示,已知?ABCD中,M是BC的中點,且AM=9,BD=12,AD=10,則該平行四邊形的面積是   
【答案】分析:根據(jù)平行四邊形的性質(zhì)及相似三角形和勾股定理求解.先證明△BOM是直角三角形,再求解△ABM的面積,進一步求出平行四邊形的面積.
解答:解:由平行四邊形ABCD可知AD∥BC,所以△AOD∽△MOB,又知BM=AD,

∴在△BOM中,MO=3,OB=4,BM=5,
∴△BOM是直角三角形,S△BOM=•OB•OM=6,
又∵S△BOM:S△ABO=OM:OA=1:2,
∴S△ABO=12,得S△ABM=18
∵M是BC的中點,
∴S?ABCD=4S△ABM=72.
故答案為72.
點評:本題要求我們能根據(jù)所給的條件與圖形,觀察出△BOM的特殊性,綜合應(yīng)用平行四邊形、相似三角形、勾股定理的逆定理和平行四邊形中圖形的面積關(guān)系,通過求出△BOM的面積,進而求得平行四邊形的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2004•重慶)如圖,AB、CD是兩個過江電纜的鐵塔,塔AB高40米,AB的中點為P,塔底B距江面的垂直高度為6米.跨江電纜因重力自然下垂近似成拋物線形,為了保證過往船只的安全,電纜下垂的最低點距江面的高度不得少于30米.已知:人在距塔底B點西50米的地面E點恰好看到點E、P、C在一直線上;再向西前進150米后從地面F點恰好看到點F、A、C在一直線上.
(1)求兩鐵塔軸線間的距離(即直線AB、CD間的距離);
(2)若以點A為坐標(biāo)原點,向東的水平方向為x軸,取單位長度為1米,BA的延長方向為y軸建立坐標(biāo)系.求剛好滿足最低高度要求的這個拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:填空題

(2004•重慶)如圖,在△ABC中,∠ACB=90°,AC=,斜邊AB在x軸上,點C在y軸的正半軸上,點A的坐標(biāo)為(2,0).則直角邊BC所在直線的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2004•重慶)如圖,在△ABC中,∠ACB=90°,AC=,斜邊AB在x軸上,點C在y軸的正半軸上,點A的坐標(biāo)為(2,0).則直角邊BC所在直線的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年重慶市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•重慶)如圖,AB、CD是兩個過江電纜的鐵塔,塔AB高40米,AB的中點為P,塔底B距江面的垂直高度為6米.跨江電纜因重力自然下垂近似成拋物線形,為了保證過往船只的安全,電纜下垂的最低點距江面的高度不得少于30米.已知:人在距塔底B點西50米的地面E點恰好看到點E、P、C在一直線上;再向西前進150米后從地面F點恰好看到點F、A、C在一直線上.
(1)求兩鐵塔軸線間的距離(即直線AB、CD間的距離);
(2)若以點A為坐標(biāo)原點,向東的水平方向為x軸,取單位長度為1米,BA的延長方向為y軸建立坐標(biāo)系.求剛好滿足最低高度要求的這個拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年重慶市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2004•重慶)如圖,在△ABC中,∠ACB=90°,AC=,斜邊AB在x軸上,點C在y軸的正半軸上,點A的坐標(biāo)為(2,0).則直角邊BC所在直線的解析式為   

查看答案和解析>>

同步練習(xí)冊答案