(2011•臨沂)如圖.以O為圓心的圓與△AOB的邊AB相切于點C.與OB相交于點D,且OD=BD,己知sinA=,AC=

(1)求⊙O的半徑:
(2)求圖中陰影部分的面枳.



(1)連接OA,
∵以O為圓心的圓與△AOB的邊AB相切于點C.
∴CO⊥AB,
∵sinA==,
∵AC=
∴假設CO=2x,AO=5x,
4x2+21=25x2,
解得:x=1,
∴CO=2,
∴⊙O的半徑為2;
(2)∵⊙O的半徑為2;
∴DO=2,
∵DO=DB,
∴BO=4,
∴BC=2,
∴2CO=BO,
∵O⊥BC,
∴∠CBO=30°,
∠COD=60°,
圖中陰影部分的面枳為:S△OCB﹣S扇形COD=×2×2﹣=2π.

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•臨沂)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•臨沂)如圖.以O為圓心的圓與△AOB的邊AB相切于點C.與OB相交于點D,且OD=BD,己知sinA=,AC=

(1)求⊙O的半徑:
(2)求圖中陰影部分的面枳.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•臨沂)如圖,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,則梯形ABCD的周長是(  )

A、12            B、14      C、16             D、18

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(山東臨沂卷)數(shù)學解析版 題型:解答題

(2011•臨沂)如圖1,將三角板放在正方形ABCD上,使三角板的直角頂點E與正方形ABCD的頂點A重合,三角扳的一邊交CD于點F.另一邊交CB的延長線于點G.

(1)求證:EF=EG;
(2)如圖2,移動三角板,使頂點E始終在正方形ABCD的對角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:
(3)如圖3,將(2)中的“正方形ABCD”改為“矩形ABCD”,且使三角板的一邊經(jīng)過點B,其他條件不變,若AB=a、BC=b,求的值.

查看答案和解析>>

同步練習冊答案