A. | AC∥OD | B. | CD2=CE•CO | C. | S△AEC=2S△DOE | D. | AC=2CD |
分析 根據(jù)等腰三角形的性質(zhì)和角平分線的性質(zhì),利用等量代換求證∠CAD=∠ADO即可得到A正確,過點(diǎn)O作OG⊥AC,再根據(jù)直角三角形斜邊大于直角邊可證D錯(cuò)誤;利用相似三角形的判定與性質(zhì)以及等腰直角三角形的性質(zhì)得出即可C正確;根據(jù)相似三角形的性質(zhì)即可得到B正確.
解答 證明:∵AB是半圓直徑,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于點(diǎn)D,
∴∠CAD=∠DAO=$\frac{1}{2}$∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴故A選項(xiàng)正確.
如圖1,過點(diǎn)O作OG⊥AC,
∵OG⊥AC,
∴$\widehat{AG}=\widehat{CG}$,
∵半徑OC⊥AB于點(diǎn)O,
∴$\widehat{AG}$=$\widehat{CG}$=$\widehat{CD}$,
∴AG=GC=CD,
∴AC<2CD,
∴故D選項(xiàng)錯(cuò)誤.
如圖2,過點(diǎn)E作EM⊥AC于點(diǎn)M,
∵AO=CO,AO⊥CO,
∴∠CAO=∠ACO=45°,
∴CM=ME,
∵AD平分∠CAB分別交OC于點(diǎn)E,
EO⊥AO,EM⊥AC,
∴ME=EO,
∴CM=ME=EO,
∴CE=$\sqrt{2}$ME=$\sqrt{2}$EO,
由①得:∵AC∥OD,
∴△ACE∽△DOE,
∴$\frac{EC}{EO}$=$\sqrt{2}$,
∴$\frac{{S}_{△AEC}}{{S}_{△DEO}}$=($\sqrt{2}$)2=2,
∴S△AEC=2S△DEO;故C正確,
∵OC⊥AB,OA=OC,
∴△AOC為等腰直角三角形,
∴∠DOB=∠COD=∠BAC=45°,
∵∠ADC與∠AOC都對(duì)$\widehat{AC}$,
∴∠ADC=$\frac{1}{2}$∠AOC=45°,
∴∠ADC=∠COD,又∠OCD=∠DCE,
∴△DCE∽△OCD,
∴$\frac{DC}{OC}=\frac{CE}{CD}$,即CD2=CE•OC,
故B正確.
故選D.
點(diǎn)評(píng) 此題考查了圓周角定理,圓心角、弧及弦之間的關(guān)系,以及相似三角形的判定與性質(zhì),熟練掌握?qǐng)A周角定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
最高氣溫(℃) | 14 | 15 | 16 | 17 |
天 數(shù) | 1 | 1 | 3 | 2 |
A. | 15,16 | B. | 16,15 | C. | 16,16 | D. | 16,17 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{3}$$\sqrt{10}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com