如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一點(不與點A、B重合),連接CO并延長CO交⊙O于點D,連接AD.
(1)弦AB=______(結(jié)果保留根號);
(2)當∠D=20°時,求∠BOD的度數(shù).
(1)如圖,過O作OE⊥AB于E,
∴E是AB的中點,
在Rt△OEB中,OB=2,∠B=30°,
∴OE=1,
∴BE=
3
,
∴AB=2BE=2
3


(2)解法一:∵∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.
∴∠BOD=∠B+∠A+∠D.…(3分)
又∵∠BOD=2∠A,∠B=30°,∠D=20°,
∴2∠A=∠B+∠A+∠D=∠A+50°,∠A=50°,…(4分)
∴∠BOD=2∠A=100°.…(5分)
解法二:如圖,連接OA.
∵OA=OB,OA=OD,
∴∠BAO=∠B,∠DAO=∠D,
∴∠DAB=∠BAO+∠DAO=∠B+∠D.…(3分)
又∵∠B=30°,∠D=20°,
∴∠DAB=50°,…(4分)
∴∠BOD=2∠DAB=100°(同弧所對的圓周角等于它所對圓心角的一半).…(5分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面直角坐標系中,以坐標原點O為圓心的⊙O的半徑為
2
-1,直線l:y=-x-
2
與坐標軸分別交于A、C兩點,點B的坐標為(4,1),⊙B與x軸相切于點M.
(1)求點A的坐標及∠CAO的度數(shù);
(2)⊙B以每秒1個單位長度的速度沿想x軸負方向平移,同時,直線l繞點A以每秒鐘旋轉(zhuǎn)30°的速度順時針勻速旋轉(zhuǎn),當⊙B第一次與⊙O相切時,請判斷直線ι與⊙B的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O內(nèi)有折線OABC,點B、C在圓上,點A在⊙O內(nèi),其中OA=4cm,BC=10cm,∠A=∠B=60°,則AB的長為(  )
A.5cmB.6cmC.7cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓內(nèi)兩條弦互相垂直,其中一條AB被分成3和4兩段,另一條CD被分成2和6兩段,求此圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將半徑為8的⊙O沿AB折疊,弧AB恰好經(jīng)過與AB垂直的半徑OC的中點D,則折痕AB長為(  )
A.2
15
B.4
15
C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在以O(shè)為圓心的兩個同心圓中,大圓的弦AB與小圓相切于點C,若AB的長為8cm,則圖中陰影部分的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

本市新建的滴水湖是圓形人工湖.為測量該湖的半徑,小杰和小麗沿湖邊選取A、B、C三根木柱,使得A、B之間的距離與A、C之間的距離相等,并測得BC長為240米,A到BC的距離為5米,如圖所示,請你幫他們求出滴水湖的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓弧形橋拱的跨度AB=16米,拱高CD=4米,則拱橋的半徑為______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用工件槽(如圖1)可以檢測一種鐵球的大小是否符合要求,已知工件槽的兩個底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時,若同時具有圖1所示的A、B、E三個接觸點,該球的大小就符合要求.圖2是過球心O及A、B、E三點的截面示意圖,求這種鐵球的直徑.

查看答案和解析>>

同步練習(xí)冊答案