【題目】特色大豐,美好生活, 大豐區(qū)舉行金色秋天旅游活動.明明和華華同學分析網(wǎng)上關于旅游活動的信息,發(fā)現(xiàn)最具特色的景點有:①荷蘭花海、②梅花彎、③麋鹿保護區(qū).他們準備周日下午去參觀游覽,各自在這三個景點任選一個,每個景點被選中的可能性相同.

(1)明明同學在三個備選景點中選中荷蘭花海的概率是

(2)用樹狀圖或列表法求出明明和華華他們選中不同景點參觀的概率是多少?

【答案】(1); (2)

【解析】

1)根據(jù)隨機事件的概率公式求解即可;

2)根據(jù)題意列出表格,得到所有等可能的結果與明明和華華他們選中不同景點參觀的情況,再利用概率公式進行求解即可.

(1)明明同學在三個備選景點中選中荷蘭花海的概率是;

2)由題意列表得:

華華

明明

①荷蘭花海

②梅花彎

③麋鹿保護區(qū)

①荷蘭花海

①①

①②

①③

②梅花彎

②①

②②

②③

③麋鹿保護區(qū)

③①

③②

③③

∵共有9種等可能的結果,明明和華華分別去不同景點游覽的情況有6種,

∴明明和華華分別去不同景點游覽的概率為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點,均在格點上,邊上的一點.

(Ⅰ)線段的值為______________;

(Ⅱ)在如圖所示的網(wǎng)格中,的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的部分對應值如下表:

-1

0

1

3

-3

1

3

1

則下列判斷中正確的是(

A.拋物線開口向上B.拋物線與軸的交點在軸負半軸上

C.時,D.方程的正根在34之間

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,、是對角線上的兩個動點,是正方形四邊上的任意一點,且,,設,當是等腰三角形時,下列關于點個數(shù)的說法中,一定正確的是(

①當(即、兩點重合)時,點有6個;

②當時,點最多有9個;

③當是等邊三角形時,點有4個;

④當點有8個時,.

A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,,,把線段沿射線方向平移至,直線與直線交于點,又聯(lián)結與直線交于點.

1)若,求的長;

2)設,,試求關于的函數(shù)解析式;

3)當為多少時,以、為頂點的三角形與相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA、OB、OC都是⊙O的半徑,若∠AOB是銳角,且∠AOB2BOC,則下列結論正確的是( 。﹤.

AB2BC;②2;③∠ACB2CAB;④∠ACB=∠BOC

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù) y1 kx ax a 的圖象與 x 軸交于 A、B 兩點(點 A 在點 B 的左側),已知函數(shù)y2 kx bx b 的圖象與 x 軸交于 CD 兩點(點 C 在點 D 的左側),其中 k 0, a b

(1)求證:函數(shù) y1 y2 的圖象交點落在一條定直線上;

(2) AB=CD,求 a、bk 滿足的關系式;

(3)是否存在函數(shù) y1 y2 ,使得 BC 為線段 AD 的三等分點?若存在,求的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAC=90°,AB=AC,過點A作邊BC的垂線AF交DC的延長線于點E,點F是垂足,連接BE,DF,DF交AC于點O。則下列結論:①四邊形ABCD是正方形;②CO:BE=1:3;③DE=BC;④S四邊形OCEF=S△AOD 正確的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每天鍛煉一小時,健康生活一輩子,學校準備從小明和小亮2人中隨機選拔一人當陽光大課間領操員,體育老師設計的游戲規(guī)則是:將四張撲克牌(方塊2、黑桃4、黑桃5、梅花5)的牌面如圖1,撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明兩人各抽取一張撲克牌,兩張牌面數(shù)字之和為奇數(shù)時,小亮當選;否則小明當選.

1)請用樹狀圖或列表法求出所有可能的結果;

2)請問這個游戲規(guī)則公平嗎?并說明理由.

查看答案和解析>>

同步練習冊答案