【題目】如圖,AB切⊙O于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長(zhǎng)為 . (結(jié)果保留π)

【答案】 π
【解析】解:連接OB,OC,
∵AB為圓O的切線,
∴∠ABO=90°,
在Rt△ABO中,OA=2,∠OAB=30°,
∴OB=1,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC為等邊三角形,
∴∠BOC=60°,
則劣弧 長(zhǎng)為 = π.
故答案為: π
連接OB,OC,由AB為圓的切線,利用切線的性質(zhì)得到三角形AOB為直角三角形,根據(jù)30度所對(duì)的直角邊等于斜邊的一半,由OA求出OB的長(zhǎng),且∠AOB為60度,再由BC與OA平行,利用兩直線平行內(nèi)錯(cuò)角相等得到∠OBC為60度,又OB=OC,得到三角形BOC為等邊三角形,確定出∠BOC為60度,利用弧長(zhǎng)公式即可求出劣弧BC的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形中,兩腰和底的長(zhǎng)分別是10和13,求三角形的三個(gè)內(nèi)角的度數(shù)(精確到1′)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒2cm,設(shè)運(yùn)動(dòng)的時(shí)間為t秒。

(1)當(dāng)t為何值時(shí),CP把△ABC的周長(zhǎng)分成相等的兩部分。

(2)當(dāng)t為何值時(shí),CP把△ABC的面積分成相等的兩部分,并求出此時(shí)CP的長(zhǎng);

(3)當(dāng)t為何值時(shí),△BCP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是(
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是(
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形EFGH是由矩形ABCD的外角平分線圍成的. 求證:四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)計(jì)算: ﹣( 1+(2﹣ 0
(2)解方程:x2﹣4x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對(duì)稱軸以及頂點(diǎn)坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個(gè)動(dòng)點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動(dòng)到什么位置時(shí),滿足SPAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點(diǎn)F,D為AB的中點(diǎn),連接DF延長(zhǎng)交AC于點(diǎn)E.若AB=10,BC=16,則線段EF的長(zhǎng)為(
A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案